Higgs Precision Requirements

Heidi Rzehak

Albert-Ludwigs-Universität Freiburg

28th January 2015

Several aspects:

- Experimental requirements (detectors, ...)?
- Expected size of deviations?
- Theoretical requirements (precision predicitions, ...)?

Based on assumptions e.g.:

- No beyond Standard Model physics related to electroweak symmetry breaking at the LHC
- Different Standard Model extensions

Constraints:

- \star Discovery potential of the LHC
- * Electroweak precision tests

With assumptions from before:

	$ \Delta hVV $	$ \Delta h \overline{t} t $	$ \Delta h ar{b} b $	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of $\%$
MSSM	< 1%	3%	10%, 100%	2%, 15%
			aneta > 20	all other
		r	o superpartners	cases

[Gupta, H.R., Wells, arXiv:1206.3560, arXiv:1305.6397]

Mixed-in Singlet = Standard Model (SM) + exotic Higgs boson singlet:

Higgs fields mix via operator $|H_{SM}|^2 |S|^2$ [Schabinger, Wells, hep-ph/0509209; Bowen, Cui, Wells, hep-ph/0701035]

 $\Rightarrow 2 \text{ CP-even mass eigenstates } h, H$ with couplings² to other particles

$$\begin{split} g_h^2 &= \cos^2 \theta_h \, g_{SM}^2 \qquad \qquad \theta_h = \text{mixing angle} \\ g_H^2 &= \sin^2 \theta_h \, g_{SM}^2 \end{split}$$

All couplings to other particles scaled with the same factor.

With assumptions from before:

	$ \Delta hVV $	$ \Delta h \overline{t} t $	$ \Delta h ar{b} b $	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of $\%$
MSSM	< 1%	3%	10%, 100%	2%, 15%
			aneta > 20	all other
		r	o superpartners	cases

[Gupta, H.R., Wells, arXiv:1206.3560, arXiv:1305.6397]

Model where the SM Higgs like particle is a pseudo-Goldstone: SM vector bosons and fermions + strong sector with Higgs multiplet

in terms of an effective field theory

for a strong interacting light Higgs (SILH) boson [Guidice, Grojean, Pomarol, Rattazzi, hep-ph/0703164]

Lagrangian:

$$\mathcal{L}_{\text{SILH}} = \left(\frac{c_{\gamma}y_{f}}{f^{2}}H_{SM}^{\dagger}H_{SM}\bar{f}_{L}H_{SM}f_{R} + \frac{c_{S}gg'}{4m_{\rho}^{2}}(H_{SM}^{\dagger}\sigma_{I}H_{SM})B_{\mu\nu}W^{I\mu\nu} + h.c.\right) \\ + \frac{c_{H}}{2f^{2}}\partial^{\mu}(H_{SM}^{\dagger}H_{SM})\partial_{\mu}(H_{SM}^{\dagger}H_{SM}) + \frac{c_{6}\lambda}{f^{2}}(H_{SM}^{\dagger}H_{SM})^{3} + \dots$$

New parameters: c_H , c_y , c_S , c_6 :

Naive Dimensional Analysis: $\mathcal{O}(1)$ numbers

With assumptions from before:

	$ \Delta hVV $	$ \Delta h \overline{t} t $	$ \Delta h ar{b} b $	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of $\%$
MSSM	< 1%	3%	10%, 100%	2%, 15%
			aneta > 20	all other
		r	o superpartners	cases

[Gupta, H.R., Wells, arXiv:1206.3560, arXiv:1305.6397]

red region: Several of h, H, A, H^{\pm} can be discovered green region: Only a single one, h, can be discovered

 $\tan \beta = \text{ratio of the Higgs vacuum expectation values}$ $M_A = \text{mass of the CP-odd Higgs boson}$

With assumptions from before:

	$ \Delta hVV $	$ \Delta h \overline{t} t $	$ \Delta har{b}b $	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of $\%$
MSSM	< 1%	3%	10%, 100%	2%, 15%
			aneta > 20	all other
		r	o superpartners	cases

[Gupta, H.R., Wells, arXiv:1206.3560, arXiv:1305.6397]

Important:

For the triple Higgs coupling deviations in the MSSM:

Use same approximation for: Higgs mass and triple coupling Standard Model coupling depends on the Higgs mass value, for meaningful comparison, the same precision is needed.

Precision of Standard Model Higgs couplings

Is our knowledge of the Standard Model couplings precise enough?

Uncertainties:

- Missing higher-order corrections
- Uncertainties of input parameters

Channel	Г [MeV]	$\Delta \alpha_s$	Δm_b	Δm_c	Δm_t	THU	_
$H \to b\bar{b}$	2.36	-2.3% +2.3%	+3.3% -3.2%	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	+2.0% -2.0%	arXiv:
${\rm H} \to \tau^+ \tau^-$	$2.59 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	+2.0% -2.0%	1307.1
${\rm H} \to \mu^+ \mu^-$	$8.99 \cdot 10^{-4}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$-0.1\%\ -0.0\%$	$^{+0.0\%}_{-0.1\%}$	+2.0% -2.0%	347]
$H \to c \bar c$	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	$^{-0.1\%}_{+0.1\%}$	$^{+6.2\%}_{-6.1\%}$	$^{+0.0\%}_{-0.1\%}$	+2.0% -2.0%	
$H \to gg$	$3.57 \cdot 10^{-1}$	$^{+4.2\%}_{-4.1\%}$	$^{-0.1\%}_{+0.1\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-0.2\%}_{+0.2\%}$	+3.0% -3.0%	
$H\to\gamma\gamma$	$9.59 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$	
${\sf H} ightarrow {\sf Z} \gamma$	$6.84 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+5.0\%}_{-5.0\%}$	
$H\toWW$	$9.73 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	+0.5% -0.5%	
$H\toZZ$	$1.22 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	+0.5% -0.5%	

Higgs Precision Requirements

Calculation performed using

• HDecay

[Djouadi, Kalinowski, Mühlleitner, Spira, hep-ph/9704448, arXiv:1003.1643]

- Prophecy4f for $H \rightarrow WW, ZZ \rightarrow 4$ fermions

[Bredenstein, Denner, Dittmaier, Weber, hep-ph/0604011, 0611234]

Parametric uncertainties:

$$\Delta^{p}_{+}\Gamma = \max\{\Gamma(p + \Delta p), \Gamma(p), \Gamma(p - \Delta p)\} - \Gamma(p)$$
$$\Delta^{p}_{-}\Gamma = \Gamma(p) - \min\{\Gamma(p + \Delta p), \Gamma(p), \Gamma(p - \Delta p)\}$$

Theoretical uncertainties (THU) estimations based on:

• scale variation by factor of $2^{\pm 1}$ for QCD corrections

Included corrections:

- $H \rightarrow b\bar{b}, c\bar{c}$:
 - $\star\,$ massless QCD up to N^4LO
 - * approximation of electroweak corrections

```
[Baikov, Chetyrkin, Kühn,
hep-ph/0511063; ...]
[Djouadi, Hollik 92;
Kniehl 92;
Djouadi, Haidt, Kniehl,
Zerwas, Mele, 91; ...]
```

- + H $\rightarrow \tau^+ \tau^-, \mu^+ \mu^-:$ approximation of electroweak corrections (as above)
- $H \rightarrow gg$:

 $\star\,$ up to N³LO in heavy top mass limit

* grid for electroweak corrections

[Spira, Djouadi, Graudenz, Zerwas, hep-ph/9504378; Chetyrkin, Kniehl, Steinhauser, hep-ph/9705240; Baikov, Chetyrkin, hep-ph/0604194; . . .] [Actis, Passarino, Sturm,

Uccirati, arXiv:0809.3667; arXiv:0809.1301]

- $H \rightarrow \gamma \gamma$:
 - * full NLO QCD corrections

 $\star\,$ grid for electroweak corrections

- [Dawson, Kauffman, 93; Djouadi, Spira, Zerwas, hep-ph/9305335; Melnikov, Yakovlev, hep-ph/9302281; Inoue, Najima, Oka, Saito, 94; ...] [Actis, Passarino, Sturm, Uccirati, arXiv:0809.3667; arXiv:0809.1301]
- H \rightarrow Z γ : LO virtual W, top, bottom, τ loop contributions
- $H \rightarrow ZZ, WW \rightarrow 4$ fermions:
 - $\star \ \mathsf{NLO} \ \mathsf{QCD} + \mathsf{NLO} \ \mathsf{electroweak}$

[Bredenstein, Denner, Dittmaier, Weber, hep-ph/0604011, 0611234]

For complete list of references,

see [LHC Higgs Cross Section Working Group Collaboration, arXiv:1201.3084]

Further parametric uncertainties

Similar analysis:

Almeida, Lee, Pokorski, Wells, arXiv:1311.6721

Consideration of additional parametric uncertainties:

- Higgs mass
- $\alpha(M_Z)$
- Z boson mass
- τ lepton mass
- Fermi constant G_F

For $H \rightarrow ZZ, WW, Z\gamma$:

Higgs mass uncertainties are especially important

With all uncertainties:

Branching ratios theoretically determined only at a few percent level

Further analysis:

[Lepage, Mackenzie, Peskin, arXiv:1404.0319]

• Better precision:

Use $\overline{\text{MS}}$ mass instead of the bottom/charm pole mass

• For projections into the future: take into account improvements from lattice QCD

Their conclusions:

- $\star\,$ Precision already below percent level
- \star Will improve

Many higher-order corrections are already known e.g. in the MSSM

Ongoing effort to improve the precision in other models:

- Two-Higgs doublet models, (N)MSSM,
- Effective theories
- \Rightarrow Uncertainties due to missing higher-order corrections will reduce.
- \Rightarrow Parametric uncertainties? (need input)

- Deviations of the Standard Model couplings might be at percent level.
- Theoretical precision of Standard Model couplings is at a similar level or below.
- Current and future work will improve the situation.
- \Rightarrow Precise measurement of Higgs couplings will be useful.

Higgs couplings in a mixed-in Singlet Model

Standard Model (SM) + exotic Higgs boson singlet:

Higgs fields mix via operator $|H_{SM}|^2 |S|^2$

[Schabinger, Wells, hep-ph/0509209; Bowen, Cui, Wells, hep-ph/0701035]

 \Rightarrow 2 CP-even mass eigenstates h, H with $couplings^2$

> $g_{b}^{2} = c_{b}^{2} g_{SM}^{2}$ $c_h = \cos \theta_h$ $\theta_h = \text{mixing angle}$ $g_{\mu}^2 = s_b^2 g_{SM}^2$ $s_h = \sin \theta_h$

Here: *h* the SM like one

H the heavier Higgs boson – detectable at the LHC if light enough

Higgs couplings in a mixed-in Singlet Model

[Gupta, H.R., Wells, arXiv:1206.3560]

Region of possible LHC detection of the heavy Higgs boson and region allowed by electroweak precision tests in the s_h^2 - m_H plane:

Higgs couplings in a mixed-in Singlet Model

[Gupta, H.R., Wells, arXiv:1305.6397]

Region of possible LHC detection of the heavy Higgs boson and region allowed by electroweak precision tests in the s_h^2 - m_H plane:

Model where the SM Higgs like particle is a pseudo-Goldstone:

SM vector bosons and fermions $+\ strong\ sector\ with\ Higgs\ multiplet$

in terms of an effective field theory

for a strong interacting light Higgs (SILH) boson

[Guidice, Grojean, Pomarol, Rattazzi, hep-ph/0703164]

two independent parameters: mass of new resonance m_{ρ} decay constant f with $m_{\rho} = g_{\rho}f$ $g_{\rho} =$ coupling of the new resonance

Lagrangian:

$$\mathcal{L}_{\text{SILH}} = \left(\frac{c_{y}y_{f}}{f^{2}}H_{SM}^{\dagger}H_{SM}\bar{f}_{L}H_{SM}f_{R} + \frac{c_{S}gg'}{4m_{\rho}^{2}}(H_{SM}^{\dagger}\sigma_{I}H_{SM})B_{\mu\nu}W^{I\mu\nu} + h.c.\right) \\ + \frac{c_{H}}{2f^{2}}\partial^{\mu}(H_{SM}^{\dagger}H_{SM})\partial_{\mu}(H_{SM}^{\dagger}H_{SM}) + \frac{c_{6}\lambda}{f^{2}}(H_{SM}^{\dagger}H_{SM})^{3} + \dots$$

Naive Dimensional Analysis: c_H , c_y , c_S , c_6 : $\mathcal{O}(1)$ numbers

[Gupta, H.R., Wells, arXiv:1206.3560]

region allowed by electroweak precision tests in the m_{ρ} - g_{ρ} plane:

 $\xi = rac{v^2 g_
ho^2}{m_c^2}$, $m_
ho$ and $g_
ho$ mass and coupling of the new resonance

[Gupta, H.R., Wells, arXiv:1206.3560]

region allowed by electroweak precision tests in the m_{ρ} - g_{ρ} plane:

[Gupta, H.R., Wells, arXiv:1305.6397]

region allowed by electroweak precision tests in the m_{ρ} - g_{ρ} plane:

MSSM Higgs potential: depends on gauge couplings

Particles to be fully identified or discovered:

2 CP-even h, H	
1 CP-odd A	might be discovered
2 charged H^{\pm}	at the LHC depending
	on parameters
lots of superpartners	

in our case: *h* is always the SM like Higgs boson otherwise (i.e. H = SM like Higgs boson): *h*, *A* or H^{\pm} should be discovered at the LHC

[Gupta, H.R., Wells, arXiv:1206.3560]

red region: Several of
$$h$$
, H , A , H^{\pm} can be discovered green region: Only a single one, h , can be discovered

 $\tan \beta = \text{ratio of the Higgs vacuum expectation values}$

[Gupta, H.R., Wells, arXiv:1206.3560]

Legend:

several h, H, A, H^{\pm} discovered only h is discovered: exluded by $Br(b \rightarrow s\gamma)$ also stop quarks lighter than a 1 TeV stops heavier 1 TeV, but not all heavier than 1.5 TeV stops heavier than 1.5 TeV

Scan done using FeynHiggs [Hahn, Heinemeyer, Hollik, H.R., Weiglein, Williams]

[Gupta, H.R., Wells, arXiv:1206.3560]

Legend:

several *h*, *H*, *A*, H^{\pm} discovered only *h* is discovered: exluded by $Br(b \rightarrow s\gamma)$ also stop quarks lighter than a 1 TeV stops heavier 1 TeV, but not all heavier than 1.5 TeV stops heavier than 1.5 TeV

• biggest deviation of the SM Higgs coupling to bottom quarks $\Delta g_b/g_b^{SM}$ with $\Delta g_b = g_b^{MSSM} - g_b^{SM}$ for tan $\beta = 5$, up to a 100%.

$$M_A \gg M_Z$$
: $\frac{\Delta g_b}{g_b^{\rm SM}} \propto \frac{M_Z^2}{M_A^2}$

[Gupta, H.R., Wells, arXiv:1206.3560]

Legend:

several *h*, *H*, *A*, H^{\pm} discovered only *h* is discovered: exluded by $Br(b \rightarrow s\gamma)$ also stop quarks lighter than a 1 TeV stops heavier 1 TeV, but not all heavier than 1.5 TeV stops heavier than 1.5 TeV

• for large tan β and light stops, enhancement by Δ_b contributions Δ_b : tan β enhanced contribution due to

[Carena, Garcia, Nierste, Wagner, hep-ph/9912516]

- overall behaviour similar for $\Delta g_{\tau}/g_{\tau}^{\rm SM}$, no Δ_{τ} contributions included
- for tan β > 20 and heavy stops: maximal deviation of ~ 10 %.
- Maximal deviations for coupling to Z or W: $\Delta g_V/g_V^{SM} < 1$ %
- Maximal deviations for coupling to top quarks: $\Delta g_t/g_t^{SM} \approx 3 \%$

[Gupta, H.R., Wells, arXiv:1305.6397]

Devation of the triple Higgs coupling in the MSSM:

Use same approximation for Higgs boson mass and triple coupling!

Here: renormalization-group improved corrections of the eff. potential,

incl. some 2-loop terms [Carena, Espinosa, Quiros, Wagner, hep-ph/9504316]

