CLIC Detector and Physics Project

$\begin{array}{l} \mbox{Eva Sicking (CERN)} \\ \mbox{on behalf of the CLICdp collaboration} \end{array} \end{array}$

CLIC workshop January 28, 2015

CLICdp: CLIC Detector and Physics

- Collaboration for CLIC-specific detector R&D
 - ightarrow Physics prospects through simulation studies
 - \rightarrow Detector optimisation and R&D for CLIC
- Strong links to ILC detector concepts, CALICE, FCAL

• Details at • http://clicdp.web.cern.ch/

- "Light-weight" collaboration structure
- 25 institutes, 5 new institutes in 2014
- New members are welcome to join!

CLIC physics program

- High luminosity over wide range of \sqrt{s} \rightarrow staged construction
- CLIC energy stages defined by physics \rightarrow adapt to discoveries at LHC
- Currently proposed scenario
 - \sqrt{s} =360 GeV, 500 fb⁻¹
 - SM Higgs physics including total width measurement
 - Top threshold scan
 - $\sqrt{s} = 1.4 \,\text{TeV}, \, 1.5 \,\text{ab}^{-1}$
 - New physics
 - tt
 t H, Higgs self coupling
 - Rare Higgs decays
 - \sqrt{s} =3 TeV, 2 ab⁻¹
 - New physics
 - Higgs self coupling
 - Rare Higgs decays

CLIC physics program

- High luminosity over wide range of \sqrt{s} \rightarrow staged construction
- CLIC energy stages defined by physics \rightarrow adapt to discoveries at LHC
- Currently proposed scenario
 - \sqrt{s} =360 GeV, 500 fb⁻¹
 - SM Higgs physics including total width measurement
 - Top threshold scan
 - $\sqrt{s} = 1.4 \,\text{TeV}, \, 1.5 \,\text{ab}^{-1}$
 - New physics
 - tt
 t H, Higgs self coupling
 - Rare Higgs decays
 - $\sqrt{s}=3 \text{ TeV}$, 2 ab^{-1}
 - New physics
 - Higgs self coupling
 - Rare Higgs decays

Higgs physics at CLIC (1)

Higgs physics at CLIC (2)

Higgs

Higgsstrahlung at $\sqrt{s} = 350 \,\text{GeV}$

- Measure HZ events from Z recoil mass
- Includes invisible Higgs decays
- Measurement of g_{HZZ} coupling
- $Z \rightarrow e^+e^-/\mu^+\mu^-$ decay
 - BR($Z \rightarrow \mu \mu / ee$) $\approx 7\%$
 - Fully model independent
 - $\Delta \sigma_{HZ} / \sigma_{HZ} \approx 4.2\% \rightarrow \Delta (g_{HZZ}) / g_{HZZ} \approx 2.1\%$
- $Z \rightarrow q\bar{q}$ decay
 - BR $(Z \rightarrow q\bar{q}) \approx 70\%$
 - Challenge: $Z \rightarrow q\bar{q}$ reconstruction may depend on H decay mode
 - $\Delta \sigma_{HZ} / \sigma_{HZ} \approx 1.8\% \rightarrow \Delta (g_{HZZ}) / g_{HZZ} \approx 0.9\%$

	Measurement	Observable	Statistical precision		
Channel			$350{ m GeV}$ $500{ m fb}^{-1}$	$\begin{array}{c} 1.4\mathrm{TeV}\\ 1.5\mathrm{ab}^{-1} \end{array}$	$3.0\mathrm{TeV}$ $2.0\mathrm{ab}^{-1}$
ZH	Recoil mass distribution	m _H	120 MeV	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	Γ _{inv}	0.6%	-	-
ZH	$H \rightarrow b\bar{b}$ mass distribution	тH	tbd		
Hv _e v _e	$H \rightarrow bb$ mass distribution	тH	-	40 MeV*	33 MeV*
ZH	$\sigma(HZ) \times BR(Z \rightarrow I^+I^-)$	g ² HZZ	4.2%	-	-
ZH	$\sigma(HZ) imes BR(Z o q ar{q})$	8 8 H77	1.8%	-	-
ZH	$\sigma(HZ) imes BR(H o b\overline{b})$	g ² _{HZZ} g ² _{Hbb} /F _H	$1\%^{\dagger}$	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow c\overline{c})$	gHZZ gHcc/FH	5% [†]	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow gg)$	HZZ HCC ···	6%†	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow \tau^+ \tau^-)$	$g_{H77}^2 g_{H77}^2 / \Gamma_H$	6.2%	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow WW^*)$	gH77gHMM//FH	2%†	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow ZZ^*)$	8H778H77/FH	tbd	-	-
$Hv_e \bar{v}_e$	$\sigma(Hv_e \bar{v}_e) imes BR(H o b\bar{b})$	g ² _{HM/M} /g ² _{Hbb} /F _H	3%†	0.3%	0.2%
Hve⊽e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow c\bar{c})$	g2mm/g2mc/FH	-	2.9%	2.7%
$Hv_e \bar{v}_e$	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow gg)$	nov nee	-	1.8%	1.8%
$Hv_e \bar{v}_e$	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \tau^+ \tau^-)$	g ² _{HWW} g ² _{Hττ} /Γ _H	-	4.2%	tbd
$Hv_e \bar{v}_e$	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \mu^+ \mu^-)$	g ² HWW g ² HUU / FH	-	38%	16%
Hve⊽e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \gamma \gamma)$	iiiiii iipp	-	15%	tbd
Hv _e \bar{v}_e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow Z\gamma)$		-	42%	tbd
Hveve	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow WW^*)$	g ⁴ HWW /ΓH	tbd	1.4%	0.9%
$Hv_e \bar{v}_e$	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow ZZ^*)$	² ^g _{HWW} ² ^H _{HZZ} / ^F H	-	3%†	2%†
Hee	$\sigma(Hee) imes {\sf BR}(H o bar{b})$	gHZZ ^{gHbb/F} H	-	$1\%^{\dagger}$	0.7%†
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{\mu\nu\tau}^2 g_{\mu\nu\nu}^2 / \Gamma_H$	-	8%	tbd
HHve⊽e	$\sigma(HHv_e\bar{v}_e)$	SHHWW	-	7%*	3%*
HHve⊽e	$\sigma(HHv_e \bar{v}_e)$	$\bar{\lambda}$	-	32%	16%
$HHv_e \bar{v}_e$	with $-80\%~e^-$ polarisation	λ	-	24%	12%
ts withou	it beam polarisation		†: es	stimated, *	: prelimina

Results from full Geant4 detector simulations including backgrounds

Results without beam polar Eva Sicking (CERN)

January 28, 2015 7 / 22

Results from full Geant4 detector simulations including backgrounds

Channel	Measurement	Observable	Statistical precision		
			$350{ m GeV}$ $500{ m fb}^{-1}$	$\begin{array}{c} 1.4\mathrm{TeV}\\ 1.5\mathrm{ab}^{-1} \end{array}$	$3.0\mathrm{TeV}$ $2.0\mathrm{ab}^{-1}$
ZH	Recoil mass distribution	m _H	120 MeV	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	Γ _{inv}	0.6%	-	-
ZH	$H \rightarrow b\bar{b}$ mass distribution	тH	tbd		
Hveve	$H \rightarrow bb$ mass distribution	тн	-	40 MeV*	33MeV*
ZH	$\sigma(HZ) \times BR(Z \rightarrow I^+I^-)$	² 8H77	4.2%	-	-
ZH	$\sigma(HZ) imes BR(Z o q ar{q})$	8 8 H77	1.8%	-	_
ZH	$\sigma(HZ) \times BR(H \rightarrow b\bar{b})$	g ² uzzg ² uhh/FH	$1\%^{\dagger}$	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow c\bar{c})$	g ² uzzg ² uzz/Гн	5% [†]	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow gg)$	SHZZ SHCC/ II	6% [†]	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow \tau^+ \tau^-)$	$g_{\mu \pi \pi}^2 g_{\mu \pi \pi}^2 / \Gamma_H$	6.2%	-	-
ZH	$\sigma(HZ) \times BR(H \rightarrow WW^*)$	807780MM//FH	2%†	_	-
ZH	$\sigma(HZ) \times BR(H \rightarrow ZZ^*)$	80778077/Fu	tbd	_	_
Hveve	$\sigma(Hv_e\bar{v}_e) \times BR(H \rightarrow b\bar{b})$	g ² mana/g ² ucc/FH	3%†	0.3%	0.2%
Hve⊽e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow c\bar{c})$	g ² mm/g ² mm/FH	-	2.9%	2.7%
Hveve	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow gg)$	- HVVVV - HCC · II	-	1.8%	1.8%
Hve⊽e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \tau^+ \tau^-)$	g ² _{HMM} g ² _{HTT} /F _H	-	4.2%	tbd
Hveve	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \mu^+ \mu^-)$	g ² HWW g ² HUU / FH	-	38%	16%
Hve⊽e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow \gamma \gamma)$	iiiiii iipp	-	15%	tbd
Hveve	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow Z\gamma)$		-	42%	tbd
Hveve	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow WW^*)$	g ⁴ HWW /ΓH	tbd	1.4%	0.9%
Hv _e \bar{v}_e	$\sigma(Hv_e \bar{v}_e) \times BR(H \rightarrow ZZ^*)$	² ^g _{HWW} ² ^H _{HZZ} / ^F H	-	3%†	2%†
Hee	$\sigma(Hee) imes {\sf BR}(H o bar{b})$	gHZZ ^{gHbb/F} H	-	$1\%^{\dagger}$	0.7% [†]
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	g ² _{HT} g ² _{HL} /F _H	-	8%	tbd
HHve⊽e	$\sigma(HHv_e\bar{v}_e)$	- MLL- MDD/ 11 8HHW/W/	-	7%*	3%*
HHve⊽e	$\sigma(HHv_e \bar{v}_e)$	λ	-	32%	16%
HHv _e v _e	with $-80\%~e^-$ polarisation	λ	-	24%	12%
s withou	it beam polarisation		†: es	stimated, *	: prelimin

Eva Sicking (CERN)

Res

Higgs coupling to mass

- Combine results of studied Higgs production and decay channels in global fit \rightarrow extract couplings and Higgs width
- Fully model independent approach, unique for lepton colliders

 Paper draft "Higgs Physics at the CLIC Electron-Positron Linear Collider" currently in collaboration review

Eva Sicking (CERN)

CLIC physics aims \rightarrow detector needs

- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons $\rightarrow \sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1}$
- Jet energy resolution
 - Separation of W/Z/H di-jets
 - $ightarrow~\sigma_E/E\sim$ 3.5% for jets above 100 GeV
- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 - $\rightarrow \sigma_{r\varphi} \sim 5 \oplus 15/(p[\text{GeV}]\sin^{\frac{3}{2}}\theta)\mu m$
- Angular coverage
 - Very forward electron tagging
 - ightarrow Down to $heta=10\,{
 m mrad}$
- Requirements from CLIC beam structure and beam-induced backgrounds

Detector requirements

CLIC detector needs: beam-induced backgrounds

- Small bunch size: $\sigma_{x,y,z} = \{40 \text{ nm}, 1 \text{ nm}, 44 \mu \text{ m}\} \rightarrow \text{strong beam-beam interactions}$
- Resulting background mostly at low $p_{\rm T}$ and low θ
- Reject backgrounds using timing and $p_{\rm T}$ cuts
- Requirement:

High detector granularity in space and time

CLIC detector concept

Vertex detector requirements for CLIC

- Single point resolution of $\sigma < 3 \mu m$
 - \rightarrow pixel pitch $\approx 25 \,\mu$ m, analogue readout
- Material budget $< 0.2\%X_0$ per layer
 - ightarrow 50 μ m sensor+50 μ m ASIC, low mass support, power pulsing, air cooling
- Time stamping $\leq 10 \text{ ns}$

 \rightarrow Comprehensive vertex R&D

January 28, 2015 12 / 22

CLIC Detector and Physics Project

Eva Sicking (CERN)

Vertex detector

thin electronics + sensor assembly 50 um thin sensor on 700 um Timepix ASIC

Vertex detector requirements for CLIC

- Single point resolution of $\sigma < 3 \mu m$
 - \rightarrow pixel pitch $\approx 25 \,\mu$ m, analogue readout
- Material budget $< 0.2\%X_0$ per layer
 - \rightarrow 50 μ m sensor+50 μ m ASIC, low mass support, power pulsing, air cooling
- Time stamping < 10 ns</p>

thin silicon sensor

interconnect technology

power delivery + pulsing

14 mm thin supports

Eva Sicking (CERN)

 \rightarrow Comprehensive vertex R&D

 \rightarrow Vertex and tracking session (Thursday)

Test beam experiments with Timepix assemblies

- Test beam experiments with Timepix hybrid pixel-detector assemblies
 - Pixel size 55 μm
 - Sensor thickness 50–500 μ m

Charge sharing increases with sensor thickness

- 1-hit cluster RMS \sim 18 μ m
- $\bullet~$ 2-hit cluster RMS $\sim 4.1\,\mu\text{m}$
- Reduce pixel size ($ightarrow 25\,\mu$ m) for higher charge sharing
- \rightarrow improved resolution for the expected 50 μm thickness

Test beam experiments with CLICpix+HV-CMOS

Bias voltage scan at low threshold

- First proof of principle in a test beam ۲
- Glueing solves limitation of bump bonding at very fine pitch

Comparison of performance of • 1 and 2 sensor amplification stages

Vertex detector cooling

- Vertex detector with low material budget \rightarrow Power pulsing and air cooling
- Heat load of 50 mW/cm² extractable using spiral air flow
 - \rightarrow Test concept in simulations

- Verify simulation results using real size vertex-detector mockup
 - Visual test of air flow using smoke
 - Study spiral air-flow feasibility, temperature and vibrations

High-granularity calorimetry: CALICE

- Neutral particles are invisible in tracking detectors \rightarrow use calorimeters
- $\bullet~$ Jet energy resolution goal 3.5% above 100 GeV
 - \rightarrow high-granularity sampling calorimeters
 - \rightarrow readout cell size of few $\rm cm^2$
- CALICE test beam experiments + analysis:
 - Electromagnetic/Hadronic calorimeters
 - W and Fe as absorbers
 - Analogue and digital readout Example: Scintillator tiles+SiPM

CALICE test beam experiments

Scintillator tile + SiPM

Calorimetry

High-granularity calorimetry: CALICE

\rightarrow Calorimetry session (Tuesday)

Sampling calorimeter

- Neutral particles are invisible in tracking detectors \rightarrow use calorimeters
- Jet energy resolution goal 3.5% above 100 GeV
 - \rightarrow high-granularity sampling calorimeters
 - \rightarrow readout cell size of few cm²
- CALICE test beam experiments + analysis:
 - Electromagnetic/Hadronic calorimeters
 - W and Fe as absorbers
 - Analogue and digital readout Example: Scintillator tiles+SiPM

CALICE test beam experiments

Scintillator tile + SiPM

Scintillator and SiPM R&D

- AHCAL analysis -> need for deeper understanding
- Dedicated lab for Scintillator and SiPM testing
- Test bench: electron gun, DUT on movable table, trigger scintillators, read-out electronics
- Study uniformity of response, cross-talk, ...

Development of FPGA based DAQ using AGH FE and ADC

Calibrated Scint+SiPM response

Eva Sicking (CERN)

CLIC Detector and Physics Project

January 28, 2015 17 / 22

Forward CALorimetry: FCAL

- Very forward e.m. calorimeters (LumiCal + BeamCal)
- Very compact design (sensors, read-out + tungsten plates)

[×] LumiCal Si sensor (one sector) covered with Kapton fan-out

- ← FPGA based back-end electronics
- ✓ 4 pairs of front-end ASICs and ADC (read-out for 32 channels)

- ↑ Precision-machined W plates (flatness/roughness<20/10µm) precision-mounted in permaglass frame
 - CLIC Detector and Physics Project

 October 2014: first test beam (CERN-PS) with multilayer structure (4 sensor planes; 11 tungsten plates; different configurations)

Calorimetry

Forward CALorimetry: FCAL

- Very forward e.m. calorimeters (LumiCal + BeamCal)
- Very compact design (sensors, read-out + tungsten plates)

LumiCal Si sensor (one sector) covered with Kapton fan-out

- ← FPGA based back-end electronics
- ✓ 4 pairs of front-end ASICs and ADC (read-out for 32 channels)

- Precision-machined W plates $(flatness/roughness < 20/10 \mu m)$ precision-mounted in permaglass frame
 - CLIC Detector and Physics Project

↓ October 2014: first test beam (CERN-PS) with multilayer structure (4 sensor planes; 11 tungsten plates; different configurations)

 \rightarrow Calorimetry session (Tuesday)

One CLIC detector model

- Vertex
 - Double layer
 - Inner radius: 31 mm
- Full Silicon tracker
 - Outer radius R: 1.5 m
 - Half length L/2: 2.3 m
 - Single/double layer: Under investigation
- ECAL
 - Silicon and Tungsten
 - 25 layers
- HCAL
 - Scintillator and Steel
 - Cell size: under investigation
 - Acceptance: under investigation
- Magnetic field: 4T
- QD0 and forward region configuration
 - Under investigation

CLICdp work in progress

• Goal: Finalize CLIC detector model including software and validation by mid 2015

• ..

One CLIC detector model

- Vertex
 - Double layer
 - Inner radius: 31 mm
- Full Silicon tracker
 - Outer radius R: 1.5 m
 - Half length L/2: 2.3 m
 - Single/double layer: Under investigation
- ECAL
 - Silicon and Tungsten
 - 25 layers
- HCAL
 - Scintillator and Steel
 - Cell size: under investigation
 - Acceptance: under investigation
- Magnetic field: 4T
- QD0 and forward region configuration
 - Under investigation

- \rightarrow Detector optimisation session (Wednesday)
- \rightarrow Talk by J. Marshall (Friday)

CLICdp work in progress

 Goal: Finalize CLIC detector model including software and validation by mid 2015

۰. 🍳

Detector Description for HEP: DD4hep

- Full detector description, one description for all applications
- First version of CLIC simulation model now available in DD4hep
- Validation of simulation and development of reconstruction ongoing
- Synergies with AIDA, ILC, FCC

Detector Description for HEP: DD4hep

- Full detector description, one description for all applications
- First version of CLIC simulation model now available in DD4hep
- Validation of simulation and development of reconstruction ongoing
- Synergies with AIDA, ILC, FCC

Grid framework ILCDirac

- Analysis and simulations jobs are processed on the grid
- ILCDirac is the grid framework used in CLICdp
- Increasing number of users in LC community
 - \rightarrow ILD plans to move to ILCdirac for future productions

CPU usage by site

CPU usage by user

Summary

CLICdp Summary

- CLICdp collaboration is very active and it attracts more and more institutes
- Physics benchmark studies show excellent detector performance
- Higgs physics potential of CLIC has been extensively assessed
- Hardware R&D on pixel detectors and calorimeters
- One CLIC detector concept expected for mid 2015
- Software development: detector optimisation, physics benchmark analyses

Backup

Compact Linear Collider

CLIC is the only mature option for a future multi-TeV e^+e^- -collider

- Gradient of 100 MV/m
- Staged \sqrt{s} up to to 3 TeV
- New: Updating staging scenario
 → Lowest energy stage between 350–500 GeV
 → Trade-off between top and Higgs physics
- High luminosity ($\sim 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$) achievable due to small bunch size

 Prototype of copper accelerating structures for CLIC

Eva Sicking (CERN)

Pixel detector simulations

- AllPix (Geant4) simulation of EUTelescope and DUT
- Simulation of Silicon and readout chip
- Overall good agreement between data and simulation, small discrepancies in charge sharing are under investigation
- TCAD simulation of field behaviour at sensor edge
- Goal: improve understanding of active edge sensors needed

TCAD simulation of field behaviour

AllPix simulation of EUTelecope setup

CALICE Tungsten Analogue HCAL

- Analysis of test beam data of highly granular scintillator tungsten HCAL (cell size 3 × 3 cm²)
- Electrons and hadrons, 1–300 GeV

• Study linearity of detector response and energy resolution

 $a_{e^+} = (29.6 \pm 0.5)\%, b_{e^+} = (0.0 \pm 2.1)\%, a_{\pi^+} = (61.8 \pm 2.5)\%, b_{\pi^+} = (7.7 \pm 3.0)\%$

- Comparison of Data-Geant4, room for improvements for shower shapes description
- Comprehensive study of all relevant systematic uncertainties

 \rightarrow Publication including beam momenta up to 150 GeV in early 2015

CALICE Tungsten Digital HCAL

- Analysis of test beam data of highly granular RPC tungsten HCAL (cell size $1 \times 1 \text{ cm}^2$)
- Electrons and hadrons, 1–300 GeV
- Ongoing study of
 - Data quality
 - Detector calibration: layer and run wise calibration
 - Realistic detector simulation

CALICE Tungsten Digital HCAL

- Analysis of test beam data of highly granular RPC tungsten HCAL (cell size $1 \times 1 \text{ cm}^2$)
- Electrons and hadrons, 1–300 GeV
- Ongoing study of
 - Data quality
 - Detector calibration: layer and run wise calibration
 - Realistic detector simulation

Vertex detector

- Flavor tagging as gauge for detector optimisation
- Note: Tagging performance will also have impact on running time
 - 1. Single versus double layers
 - 2. More realistic material budget
 - 3. Vary inner radius (connected to choice of B-field)

 $\begin{array}{l} \rightarrow \text{ double layers} \\ \rightarrow 0.2\% X_0 \text{ per layer} \\ \rightarrow R{=}31 \text{ mm} \end{array}$

Main tracker and B Field

Gluckstern's formula:
$$\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \propto \frac{1}{{\sf B} \cdot {\sf R}^2}$$

- Improvement with larger tracker size
 - R=1.25 m \rightarrow 1.5 m
 - L/2=1.6 m \rightarrow 2.3 m (= +2 disks)
- Worsening with smaller B-field
 - Improved resolution due to enlarged tracker allows for a reduction of B-field
 - Performance degradation 10% per 0.5 T
 - With B=4 T and extended tracker better performance than in CDR

μ momentum resolution at $\theta = 90^{\circ}$ and 20°

Barrel HCAL: Absorber material

- Comparison of HCAL absorber materials tungsten and steel for $\sim 7.5 \Lambda_{\rm I}$
 - W: 75 layers, 10 mm absorber, timing cut 100 ns
 - Fe: 60 layers, 19 mm absorber, timing cut 10 ns
- Compare performance for
 - Single particle reconstruction
 - Iet reconstruction
 - \rightarrow Di-jet events $Z \rightarrow qq$
 - \rightarrow W/Z separation

- Separation performance similar for tungsten and steel
- Steel cheaper, easier to process
- \Rightarrow Use steel as absorber material for barrel HCAL

$$WW \rightarrow vlud, ZZ \rightarrow vvdd$$

Eva Sicking (CERN)

CLIC Detector and Physics Project