

Electro-Optic development for short bunch length monitoring

David Walsh, ASTeC Steven Jamison, Edward Snedden, Allan Gillespie, Thibaut Lefevre

Outline of Talk

- Requirement/Aims
- EO Techniques
- Our new technique: EO Transposition
- System Design and Testing
 - Predicting EOT signal level
 - Status of EOT monitor construction
 - EOT + FROG results!
- Resolution (Materials)

Requirement and Aims

CLIC project targets

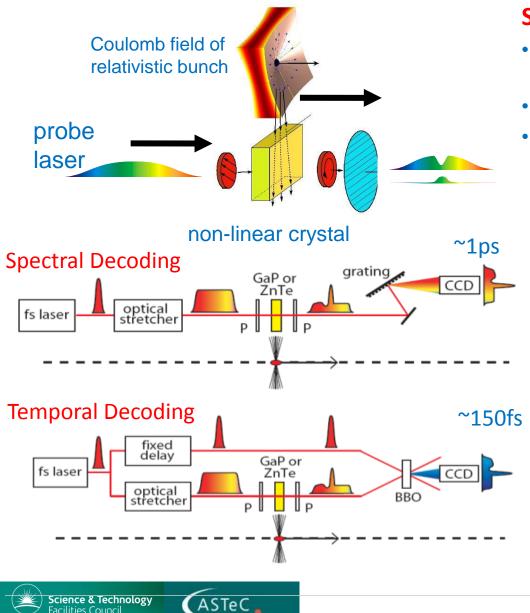
- Non-invasive
- Single shot
- Diagnostic target resolution ~20fs rms (Bunches ~150fs rms)

EO diagnostics: (encoding of Coulomb field into a laser field) Advantages

- Scales well with high beam energy
 - Particle methods get impractical (size, beam dumps)
- Non-destructive
 - Bunches can still be used
 - Live feedback

Challenges

- Unreliability, maintenance and cost of suitable ultrashort pulse laser systems
- Temporal resolution


We aim to improve on the **resolution** and the **robustness** of EO diagnostics

Current EO Techniques

Facilities Council

Standard Description

- Coulomb field flattens transversely, and defines charge distribution
- Pockels effect induces polarization ellipticity
- Technique borrowed from THz electro-optic sampling where $(t_{probe} \ll t_{THz})$
 - Chirped optical input Ο
 - Spectral readout Ο
 - Uses time-wavelength relationship Ο

- Long pulse + ultrashort pulse as gate Ο
- Spatial readout (cross-correlator crystal) Ο

David Walsh

Uses time-space relationship Ο

Physics of EO Transposition

More Rigorous Description – nonlinear frequency mixing

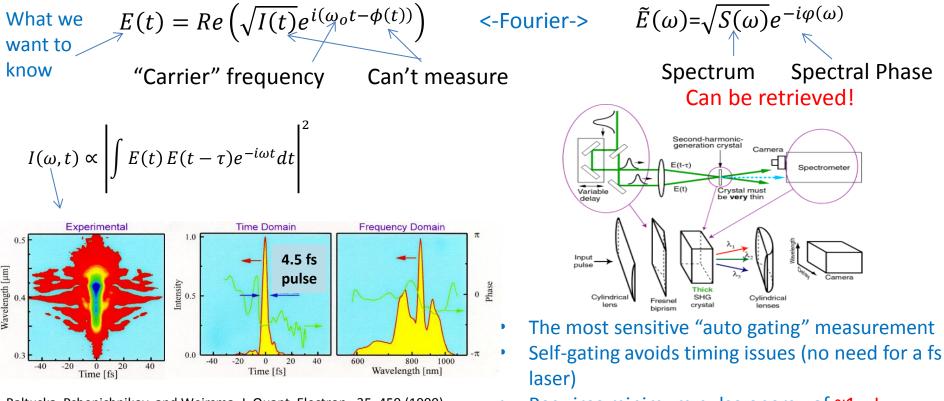
S.P. Jamison Opt. Lett. v31 no.11 p1753

$$\tilde{E}_{out}^{opt}(\omega) = \tilde{E}_{in}^{opt}(\omega) + i\omega a \tilde{E}_{in}^{opt}(\omega) * \left[\tilde{E}^{Coul}(\omega)\tilde{R}(\omega)\right]$$
Coulomb field Optical field $\tilde{E}_{in}^{opt}(\omega) = \tilde{E}_{in}^{opt}(t) + a \left[E^{Coul}(t) * R(t)\right] \frac{d}{dt} E_{in}^{opt}(t)$
Coulomb field Optical field in
$$\tilde{E}_{out}^{opt}(t) = E_{in}^{opt}(t) + a \left[E^{Coul}(t) * R(t)\right] \frac{d}{dt} E_{in}^{opt}(t)$$
Coulomb field $\tilde{E}_{in}^{opt}(t) = \tilde{E}_{in}^{opt}(t) + a \left[E^{Coul}(t) * R(t)\right] \frac{d}{dt} E_{in}^{opt}(t)$
Coulomb field $\tilde{E}_{in}^{opt}(t) = \tilde{E}_{in}^{opt}(t) + a \left[E^{Coul}(t) * R(t)\right] \frac{d}{dt} E_{in}^{opt}(t)$

David Walsh

Science & Technology Facilities Council

Characterisation of Transposed Pulse


Considerations: * needs to be single shot

* autocorrelation not unambiguous – no shorter reference pulse available

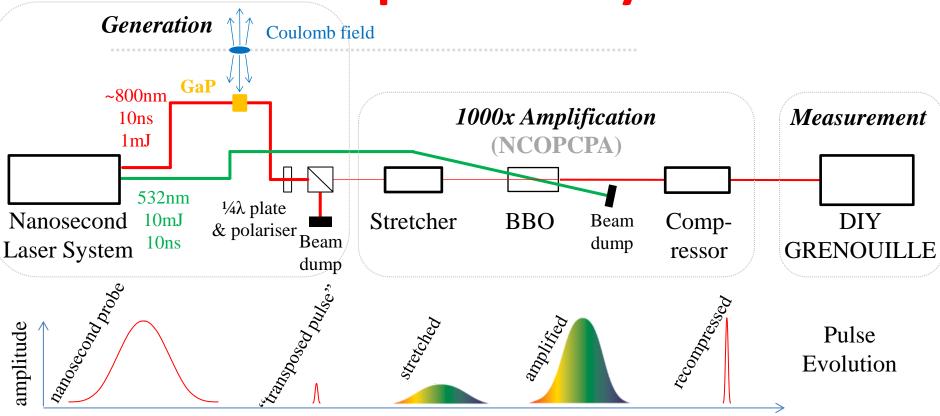
* low pulse energy

Solution: Grenouille (frequency resolved optical gating), a standard and robust optical diagnostic.

Retrieves spectral intensity and phase from spectrally resolved autocorrelation.

Baltuska, Pshenichnikov, and Weirsma, J. Quant. Electron., 35, 459 (1999).

ASTeC


cience & Technology

Facilities Counci

Requires minimum pulse energy of $\sim 1 \mu$

EO Transposition System

time

- 1. Nanosecond laser derived single frequency probe brings reliability
- 2. "Electro-Optic Transposition" of probe encodes temporal profile
- 3. Non-collinear optical parametric chirped pulse amplification (NCOPCPA) amplifies signal
- 4. Full spectral amplitude and phase measured via FROG
- 5. Coulomb field, and hence bunch profile, calculated via time-reversed propagation of pulse

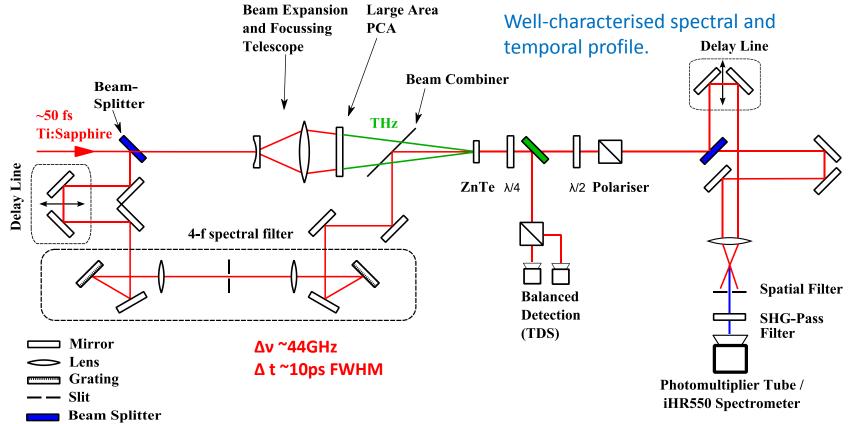
EOT System Build Status

Primary laser systems finally delivered end of Nov 2014– Characterisation largely complete All other components ready (except camera for FROG) and can now be integrated, characterised, and made robust Dye laser not proposed for the final design – possibility of building a seeded OPO **Continuum Surelite YAG** Sirah Cobra Dye laser **Beam Pointing Stability** ~ 4.5 ns, 150 mJ, seeded 6 ns, 3 mJ, linewidth < 2 GHz 2560 (microns) 2540 2520 2500 Centroid Y P2:delay(C1) 123.236 m 23.29441 m 121.877 m 123.732 m 149.53 pt 1.975e+3 2480 2460 Sirah 2440 (<22 µrad r.m.s.) 2420 Jitter < 0.3 ns r.m.s. 4140 4160 4180 4200 4220 4240 4260 4280 4300 Centroid X (microns) 414 Crystals Ā Polarisers beam transport to/from interaction **Optical Bench** 2.4m x 1m OPA 60cm x 10cm SH YAG beam quality 0.0018 **u** 0.0016 0.0014 0.0012 0.0001 0.0008 0.0006 0.0004 0.0002 Compressor 100cm x 30cm Probe Generation 24Kg x 18cm 57cm x 50cm Laser 7 75cm 7 1.6 0.2 07 Distance in m UNIVERSITY. FROG Stretcher 40cm x 16cm 100cm x 30cm

David Walsh

DUNDEE

Science & Technology


Facilities Council

ASTeC

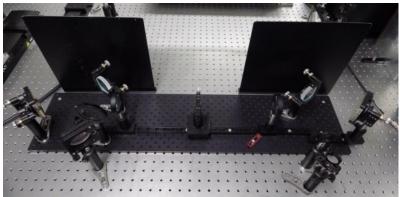
Characterisation of EO Transposition

Femtosecond laser-based test bed

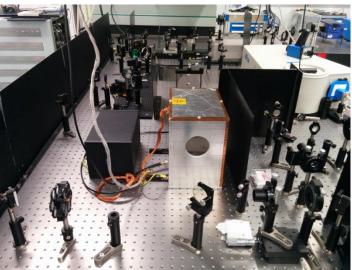
Auston switch THz source mimics Coulomb field.

Femtosecond laser pulse spectrally filtered to produce narrow bandwidth probe

Switchable diagnostics – Balanced sampling, Crossed Sampling, and Autocorrelation (spectrally resolved!)

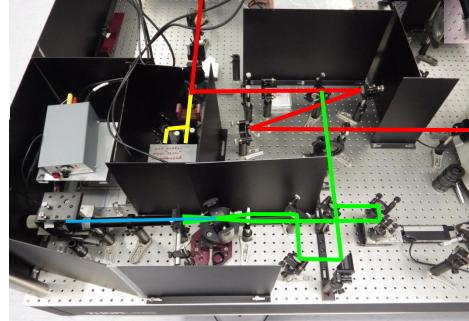


Science & Technology Facilities Council



Experimental System

4-f filter


ASTeC

Balanced detectors

Pmt & Lock-in

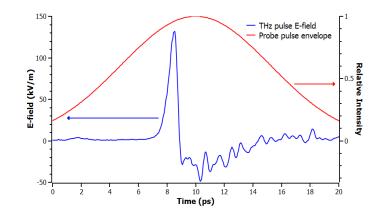
> Science & Technology Facilities Council

Autocorrelator

THz Source and interaction point

David Walsh

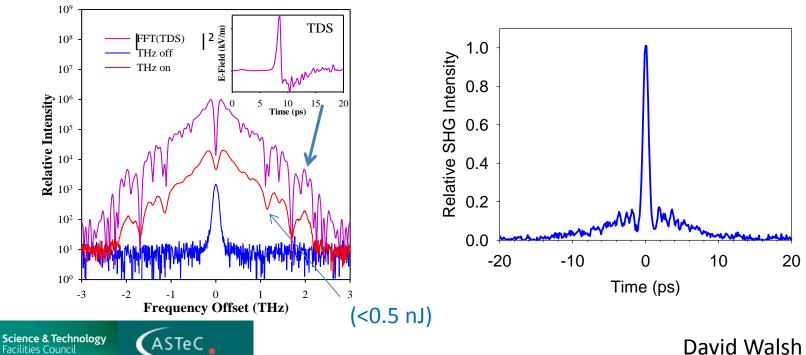
Crossed Polariser And Spectrometer



Transposed Pulse Measurements

Input pulses

Optical probe length $\Delta t \simeq 10 \text{ ps}$ Optical probe energyS $\simeq 28 \text{ nJ}$ THz field strengthE $\simeq 132 \text{ kV/m}$


Spectral Measurement

Autocorrelation

UNIVERSITY.

DUNDEE

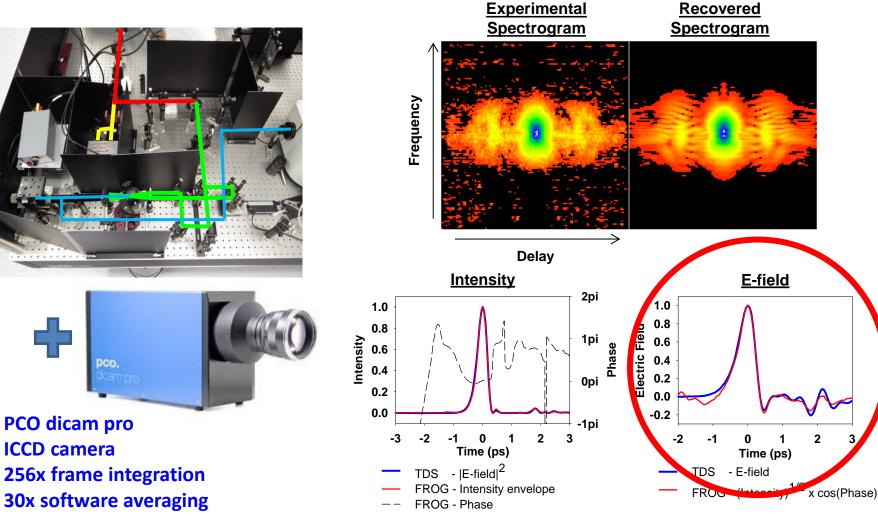
Extrapolation to bunch parameters

Scaling factors	$\boxed{\textit{Energy}_{upconv} \propto \textit{Power}_{probe} \times (\textit{Efield} \times \textit{l} \times \textit{r})^2}$				
CLIC Example:		O crystal length, $m{r}$ is the nor \sim 470pJ	nlinear coefficient		
Total energy in EOT Pulse "Typical" nanosecond pulse laser as probe		Pulse energy 1mJ Pulse duration 10ns	Power _{probe} ~ <u>100 kW</u>		
Coulomb field for target CLIC bunch parameters (CDR)		_ Bunch length 44μr Bunch charge 0.6p	$Efield \sim = 24.5 \text{ MV/m}$		
Property	Fac	tor of improvement	Pulse energy of ~15nJ is predict		
Power _{probe}		x36	1μJ required for the commercia		

Property	Factor of improvement		
<i>Power</i> _{probe}	x36		
l	÷100 ²		
r	÷2 ²		
Efield	x186 ²		
Overall	x31		

cted. al single-shot FROG, "Grenouille".

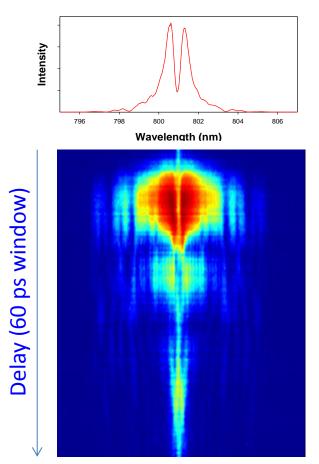
Method can be used to estimate applicability to other beams - left as an exercise for the listener!

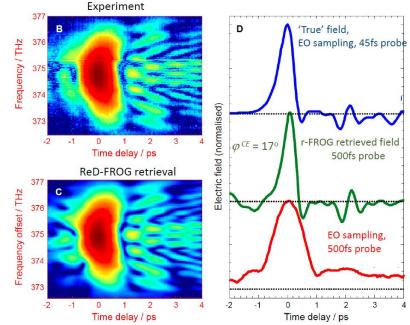


David Walsh

ASTeC

FROG Measurement


0.55 ps pulse measured with a 10 ps, transform limited, probe!


New THz Measurement Scheme (an absolute phase FROG!)

This looks like a spectrogram!

This is a FROG where both SFG and DFG mechanisms are present and spectrally overlap, a FROG algorithm was modified to account for this.

Essentially, the interference pattern between SFG and DFG in the trace reveals the absolute phase.

Theory extended to optical pulses and is being published (on Arxiv now) arXiv:1501.04864 [physics.optics]

Temporal Resolution

EO transposition scheme is now limited by materials:

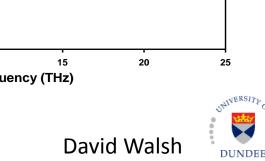
- Phase matching and absorption bands in ZnTe/GaP.
- Other materials are of interest, such as DAST or poled polymers, but there are questions over the lifetime in accelerator environments.

Collaborative effort with MAPS group at the University of Dundee on development of novel EO materials

- Potential to produce an enhancement of nonlinear processes through metallic nanoparticles.
- THz field induced second harmonic TFISH enhancement being investigated.
- Surface nonlinear effects...

A key property of the EO Transposition scheme may be exploited

- FROG (Grenouille) retrieves the spectral amplitude and phase
- At frequencies away from absorptions etc. the spectrum should still be faithfully retrieved
- Potential to run two, "tried and tested", crystals with complementary response functions side by side to record FULL spectral information!



Spectral Compositing of Multiple Crystals

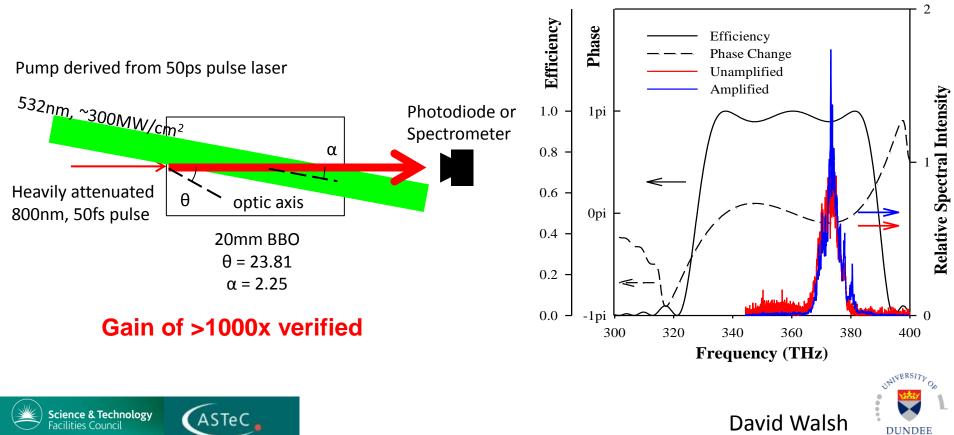
- Phasematching not the whole story
 - Dips caused by absorption near phonons
 - Phase distortion near absorptions become very large
 - Distortions in $\chi^{(2)}$ near absorptions
- Discard data around the absorption lines
- Fill in the blanks with different crystals

(10 µm thicknesses) Use GaP Use GaP Use ZnTe or ZnTe Normalised |E-field| or Efficiency 1.2 Ef ZnTe Efficiency 1.0 GaP Efficiency 0.8 0.6 0.4 0.2 0.0 n 5 10 15 20 25 Frequency (THz) Additional Phase (radians) ZnTe Induced Phase GaP Induced Phase 2 0 -2 -6 0 5 10 15 20 25 Frequency (THz)

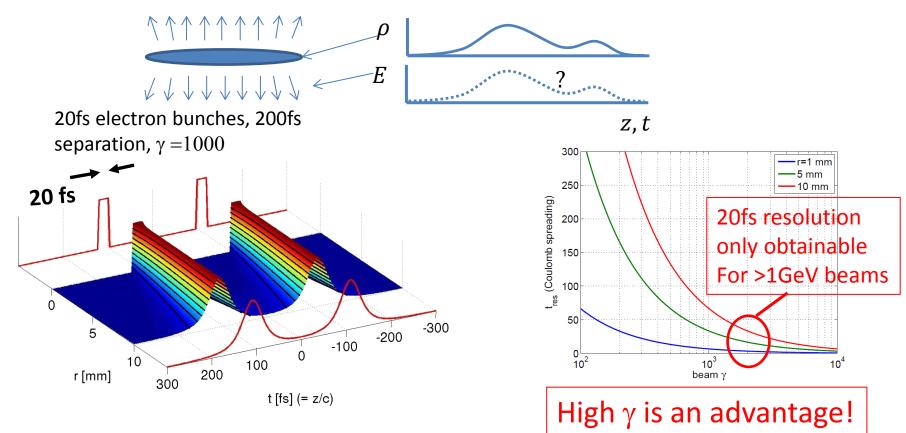
Basic numerical study is promising. Not yet demonstrated for THz... (insufficient bandwidth)

Science & Technology Facilities Council

Thank you for your attention



Chirped Pulse Optical Parametric Amplification


- Very small Phase and Amplitude distortions can be calculated (and so can be removed)
- Bandwidth very broad >50THz
- Tested using stand-ins for pump and signal picosecond laser system and Ti:Sapphire laser

Pulse spectrum maintained

Common Problem - Field at Source

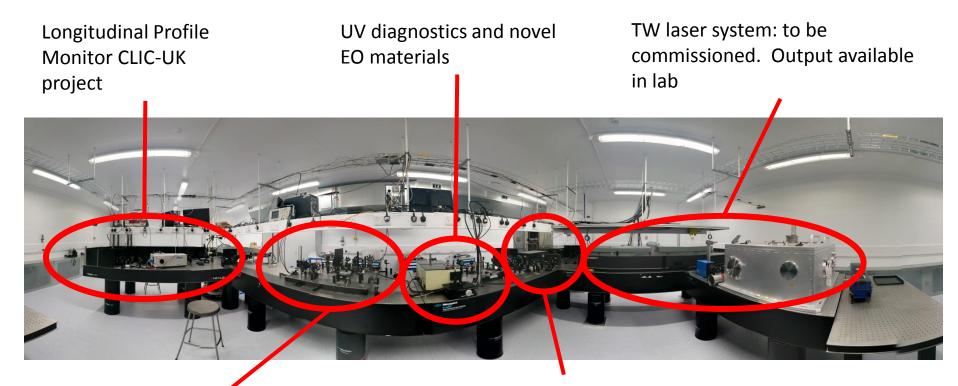
Field radiated or probed is related to Coulomb field near electron bunch

Time response & spectrum of field dependent on spatial position, R:

 $\delta t \simeq 2R/c\gamma$

 \Rightarrow ultrafast time resolution needs close proximity to bunch

cience & Techrology

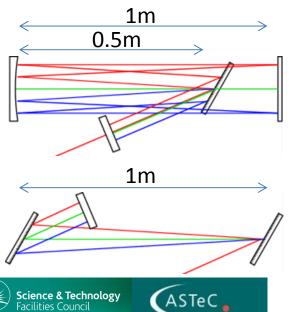

equally true of CTR, CDR, Smith-Purcell, Electro-Optic. etc.)

The Laboratory for Laser, Terahertz and Terawatt Experiments in accelerator applications

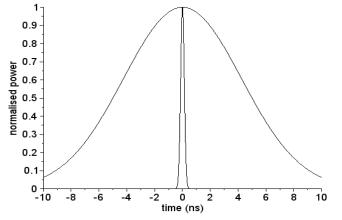
Lab overview

High power, adjustable temporal profile and polarisation state THz sources >1 MV/m

Core laser sources (lockable to RF): Ti:Sapphire - **81 MHz, <50 fs, 400 mW** or **1 kHz, <50 fs, >1 mJ** OPA - **1 kHz, 570 nm to 12 μm, 1 μJ to 270μJ** (λ dependent)



Stretcher and Compressor Design


Pulse	Properties	Peak Power	
532nm Pump	10mJ, 10ns Gaussian temporal profile	1x10 ⁶ W	
800nm EO Transpostion Signal	Amplified signal energy > 1 μJ, ~50 fs	20x10 ⁶ W	>Pump! Not possible
As above but stretched GVD = 5.6x10 ⁶ fs ²	> 1 µJ, ~310 ps	3.2x10 ³ W	OK, will not distort

Conjugate Stretcher and Compressor designs

 $GVD = 5.6 \times 10^6 \text{ fs}^2$

All gratings G=1200 lines/mm Θ_{deviation}~15°

Calculations indicate nanosecond level jitter has <u>negligible effect</u>

