

Direct Wakefield measurement of CLIC accelerating structure in FACET

Hao Zha, Andrea Latina, Alexej Grudiev (CERN)

28-Jan-2015

Experiment history and participant

- 2010.07.15: Letter of intent to SAREC for a program of measurements for the CLIC study at the FACET facility
- 2011.04.05: Recommendation from SAREC for submitting a proposal for the experiment at FACET
- 2011.10.14: Proposal is submitted to SAREC
- 2012.01.31: Proposal is presented at SAREC review
- 2012.04.18: Proposal is accepted by SAREC and experiment has got a number: E-208
- 2013.02.13: Delay of positrons at FACET. No positrons in 2013. ⊗
- 2014.01.18: Good news on positrons. Positrons commissioned in 2014. ©
- 2014.06.__: Structure prototype has been shipped to SLAC
- 2014.11.27-2014.12.03: Measurements has been done successfully!!!

Name	PI	Type of User	Insituition
E. Adli		On-site	SLAC
G. De Michele		On-site	CERN
A. Grudiev	Yes	Remote	CERN
A. Latina		On-site	CERN
D. Schulte		Remote	CERN
W. Wuensch		Remote	CERN
Hao Zha		On-site	CERN

Transverse long-range Wakefield in

CLIC-G structure

Structure name	CLIG-G TD26cc
Work frequency	11.994GHz
Cell	26 regular cells+ 2 couplers
Length (active)	230mm
Iris aperture	2.35mm - 3.15mm

transverse long-range wakefield calculation using Gdfidl code:

Peak value:

250 V/pC/m/mm

At position of second bunch (0.15m):

5~6 V/pC/m/mm

Beam dynamic requirement:

< 6.6 V/pC/m/mm

Direct wakefield measurement in FACET

Prototype structure are made of aluminium disks and SiC loads (clamped together by bolts).

6 full structures, active length = 1.38m

FACET provides 3nC, 1.19GeV electron and positron.

Maximum orbit deflection of e- due to peak transverse wake kick (1mm e+ offset): 5mm, BPM resolution: 50um

Procedure of measurement

Measurement in FACET

- Before we measured deflect orbit:
- Measure the response matrix of e+: in order to bump orbit of driven bunch with given offset.
- Measure the response matrix of e-: in order to calculate the absolutely value of wake kick.
- Dispersion free correction: decrease e- orbit jitter due to energy jitter.
- We measure:
- 252 points in time-domain wake potential (by changing e+/e- timing);
- Each point with 5~7 e+ offset.
- Each offset we take data of 100 shots.

Measurement in FACET

Wakefield analysis

Slow beam orbit drift

- Averaging on 100 shots removes fast jitter. Slow **random drift** of e- orbit is observed (2 ~ 5KeV equivalent)

 This limits the minimum resolution of
- This limits the minimum resolution of results by **0.5 V/pC/m/mm**.

Slow drift correction

- Use SVD to identify drift mode (or drift source)
- Use linear algebra to remove drift modes from orbit.
- Can remove 2 modes (1 betatron oscillation + 1 dispersion)

After drift correction

- This drift correction is used for when wakefield kick is zero or very weak (achieve 0.1 V/pC/m/mm resolution).
- Drift correction will not be used for strong wakefield kick because of:
- Orbit drift is much smaller than deflected orbit, signal noise ratio is already very high.
- It will change the calculated wake by a certain ratio, means for strong kick the error will increase.

Final results

- We measure the absolutely wakefield value, peak value 10% lower than simulations.
- Wake potential at second bunch seperation = 4.5V/pC/m/mm.
- Decay faster than simulation.

Timing shift

- There is a timing shift in the measurements.
- Should coming from the phase calibration (confirmed from SLAC people)

Before correction

Timing shift

- Artificially apply timing correction:
- 2mm *sin(phase of positron).
- Spectrum looks normal after correction.
- Need to have more study

0.02

0.04

0.06

200

100

100

-200

-300

Transverse wakefield [V/pC/m/mm]

Before correction

Measured

Simulation

14000

12000

10000

8000

Conclusion

- We successfully measured the absolutely long-range transverse wakefield potential in CLIC-G TD26cc.
- The results show expedited attenuation of HOMs, and meet the BD requirement.
- After applying lots of tools (DFS, SVD, etc.), we manage to get very accurate results (Resolution: 0.1~3 V/pC/m/mm).
- Artificially adjust the timing shift will have more physical results, and the shift like to be a real effect.
 This need to be further confirmed and studied.

Acknowledgement

- We thank Paul Scherrer Institute (PSI) financially support the prototype manufacturing through FORCE 2011 funding.
- We would give great thank to Giovanni De Michele for the preparation of the prototype and experiments.
- We thank Anastasiya Solodko by the hard work of engineer design and fabrication of the prototype.
- We thank SLAC people: Christine Clarke, Jerry Yocky, Nate Lipkowitz and all the operators' great help during the measurements.