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Ring To Main Linac(RTML) [1]

Figure: Sketch of RTML

RTML connects the damping rings and the main linac
Match beam properties
We focus on the electron part

Table: Beam properties at the start and end of the RTML for 3 TeV machine

Properties [unites] Value at the start Value at the end
Particle energy [GeV] E0 2.86 9

r.m.s. bunch length [µm] σs 1800 44
r.m.s energy spread [%] σE 0.12 1.7

Normalized emittance [nm rad] εn,x 500 600
εn,y 5 10

3 / 19



Introduction Validation of methods Results Work in process Summary Ring To Main Linac Turn Around Loop Response Matrix Correction Methods Previous Results

Turn Around Loop(TAL) [2]

TAL directs the outgoing beam towards the interaction point (IP).
Turn-left arc (10 cells), matching lattice and turn-right arc (40 cells).
The lattice is rather complex and total length is 1944 m

achromatic, i.e. R16 = 0
isochronous, i.e. R56 = 0
minimize ISR emittance growth

Emittance growth budget of TAL for static BBA is ∆εx < 100 nm · rad and
∆εy < 1 nm · rad. This is our motivation.

Figure: TAL (left), Dispersion and momentum compaction along an arc cell (right)

Split of Bins—Correct the the lattice step by step

Each bin contain 8 cells with 4 cells overlapping with the neighbor bins

Turn-left arc: 2 Bins; Match part: 1 Bin; Turn-right arc: 9 Bins.
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Response Matrix

This is a matrix between the strength of correctors and Beam Position
Monitors (BPMs) readings.

This matrix is got from BPMs readings when give correctors a kick.

For beams with different energy, response matrix are different. For this
study, we use a matrix with energy offset 0.5%

It is very important to get an accurate response matrix. We use a bunch
with 100,000 particles to get this.
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Because we have split the TAL to several bins, not all elements of the matrix
are used.
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Correction Methods

One to One (1:1)

BPM measurements: u. (u0: results on perfect machine)

Correctors strength: θ.

Response Matrix: R
θ = min { || ∆u− Rθ||22 + β2 ||θ||22 }, here ∆u = u− u0, β is parameter.

Dispersion Free Steering (DFS)—Correct the errors from BPM positions

Normal beam through the Lattice, response matrix R1, BPM u1, (ud1,
perfect machine)

Beam with energy E0(1 + δ) through the Lattice,response matrix R2,
BPM u2 (ud2, perfect machine)

Dispersion matrix D = R2 − R1, Dispersion η = u2 - u1 - (ud2 - ud1)

θ = min { || ∆u− R1θ||22 + ω2||η − Dθ||22 + β2 ||θ||22 };
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Previous Result

Thibaut Lienart has done the BBA of RTML in 2012. About the TAL he gave
result [3]:

Figure: Emitance growth along σpos

Emittance budget he used here is ∆εx < 80 nm · rad and ∆εy < 3 nm · rad
On horizontal plane, DFS can keep the emittance in the budget when
σpos reached 50 µm. σpos represents the mis-aligned position errors.
On vertical plane, using the budget ∆εy < 1 nm · rad, the tolerance is
about 5 µm
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Test of 1:1 correction

Quadrupoles are mis-aligned 30 µm. BPM is perfectly aligned. 20,000
particles are used.

In the first bin
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Figure: Orbit along BPM. Left, control larger fluctuation (β = 5); Right, no
controlment (β = 0)

The whole TAL
No correction gives NaN
β = 5 gives ∆εx = 193 nm · rad and ∆εy = 4.63 nm · rad
β = 0 gives ∆εx = 24 nm · rad and ∆εy = 0.8 nm · rad

We control the fluctuation of dipole (β = 5) because this will help DFS.
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Test of DFS correction

Only BPMs are mis-aligned with 30 µm. β = 3 and ω = 25

In the first bin
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Figure: Orbit along BPM

The whole TAL
1:1 gives ∆εx = 25.5 nm · rad and ∆εy = 0.96 nm · rad
DFS gives ∆εx = 24.5 nm · rad and ∆εy = 0.07 nm · rad
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Results—Simulation conditions

Only TAL part of RTML is simulated.

One dipole corrector is added to each quadrupole

BPM resolution is σres = 1µm.

The positions of both quadrupoles and BPMs are mis-aligned with σpos

For each σpos, 100 machines are studied.

20,000 particles in one bunch are used in one machine.

ISR and wake field are included.
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Results—Scan the weight in DFS

We mis-align the lattice on σpos = 30µm
10 points from 2 to 1024 are scanned
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Figure: Emittance growth v.s. the DFS weight

Conclusions from scanning

For ω ∈ [24, 28], the emittance growth changes small.

For different σpos, the weight dependence should be different.

Theoretically, ω2 =
σ2

pos+σ2
res

2σ2
res

.

We choose ω = 25 for the whole DFS correction.
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Results—Mean emittance growth along the lattice
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Figure: Emittance growth along the lattice

The fluctuation is due to dispersion.

For the vertical emittance, we take last valley instead of final emittance.
The last growth is due to that there is no more BPMs to constrain the
emittance and we think that after considering the following part of TAL,
i.e. BC2, the emittance will go down.
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Results—Number of machines along the emittace growth
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Figure: Number of machines v.s. emittance growth

All machines stay in the budget on horizontal direction for σpos = 50µm
Some machines (< 10%) go out the budget on vertical direction for
σpos = 30, 50µm
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Results
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Figure: Emittance growth for different mis-aligned σpos

The DFS can align the quadrupoles and BPMs on horizontal direction up
to 50µm

If σpos < 40 µm, DFS can also align the lattice within the budget.
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In process work—RTML coupling correction

Up to 50 µrad, the emittance growth on horizontal direction stays in budget.
While in vertical direction, the rotation errors must be aligned if the errors are
larger than 10 µrad
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Figure: Emittance growth for different mis-aligned σ rotation

Study the best location for two coupling correction sections (like ILC).
The beginning of the Long Transfer Line
The end of the TAL

Rotate the beam at the two points to study how better we can reach.

Then design lattice to put skew quadrupoles to correct the coupling.
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Summary

With 1:1 and DFS, the error tolerance for quadrupoles and BPMs are
aligned to 40 µm (about 5 µm before) on vertical direction.

Next step we will study more about the coupling correction .
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Thank you!
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CLIC CDR-Volume1, page 138

CLIC CDR-Volume1, page 141

Thibaut Lienart, CLIC Note 943, page 33.
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Backup

What we improve is:

Use placet_get_response_matrix_attribute to get response matrix in 1:1
correction

In DFS, we use β2 ||θ||22 to control the correctors’ strength fluctuation
instead of β2 ||θcurrent ||22
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In process work
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Figure: Emittance growth from boost linac to the end of TAL
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