Production Technology Center Berlin


Introduction to the Fraunhofer IPK

Industrialization of CLIC and X-band structures

CLIC Workshop 2015

26 – 30 January 2015 CERN

Dr.-Ing. Dirk Oberschmidt

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production Technology Center

Fraunhofer-Gesellschaft

Institute for Production Systems and Design Technology (IPK)

Corporate Management Prof. Dr.-Ing. H. Kohl

Virtual Product Creation Prof. Dr.-Ing. R. Stark

Production Systems Prof. Dr. h. c. Dr.-Ing. E. Uhlmann

Automation Technology Prof. Dr.-Ing. J. Krüger

Joining and Coating Technology Prof. Dr.-Ing. Michael Rethmeier

Quality Management Prof. Dr.-Ing. R. Jochem

Medical Technology Prof. Dr.-Ing. E. Keeve University of Technology Berlin Institute for Machine Tools and Factory Management (IWF)

Assembly Technology and Factory Management Prof. Dr.-Ing. G. Seliger

Industrial Information Technology Prof. Dr.-Ing. R. Stark

Machine Tools and Manufacturing Technology Prof. Dr. h. c. Dr.-Ing. E. Uhlmann

Industrial Automation Technology Prof. Dr.-Ing. J. Krüger

Joining and Coating Technology Temporary Administration: Prof. Dr.-Ing. R. Stark

Quality Science Prof. Dr.-Ing. R. Jochem

Micro Production Engineering Prof. Dr. h. c. Dr.-Ing. E. Uhlmann

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production Technology Center

Mission and Goals

- Fundamental research and education as well as applied research and development
- Optimization of industrial processes from the product idea through to product development, design and manufacture
- Fast transfer of R&D results into practical applications
- Cost-effective and environmentally friendly solutions for SME

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production Technology Center

Facts and Figures

- 1986 <u>IWF</u> and <u>IPK</u> move into PTZ
- > 580 employees
- More than 90 test areas and 9 special laboratories on about 15 000 m²
- <u>Budget of 29 Mio. Euro in 2013</u>
- Spin-offs and start-ups by 12 % of <u>former staff</u> <u>members</u>

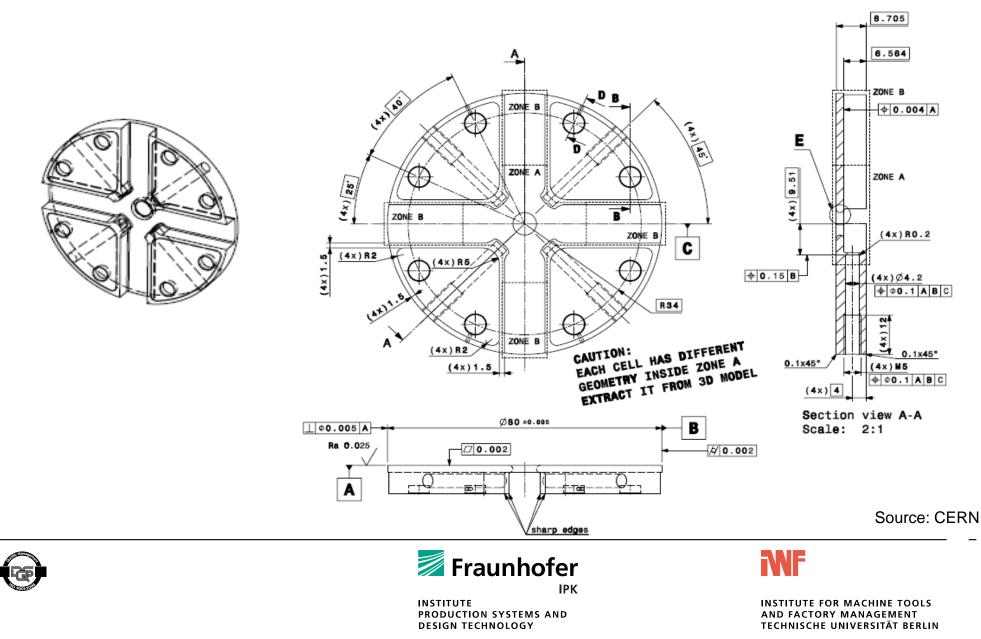
IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

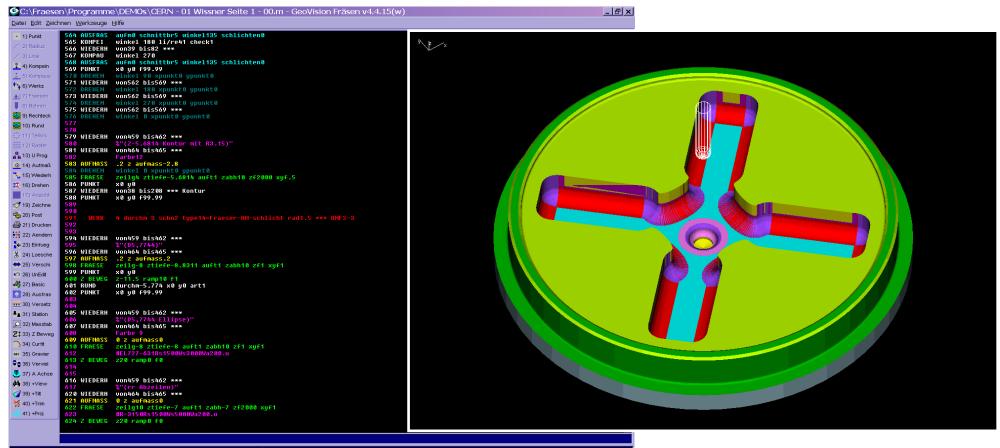
Fraunhofer IPK

Markets and Customers

Our innovative technologies strengthen your competitive position

- Mechanical and plant engineering
- Tool and mould making
- Vehicle construction
- Electrical engineering
- Software applications
- Health care
- Public institutions




IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Feasibility Study Accelerator Disc

NC-programming – Resolution, Multi-Axes Functionality, and Strategy Depending on Used Software

Bitte wählen Sie die gewünschte Option und drücken dann <ENTER>

s150 S15915

IPK

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production Planning: Manufacturing and Measurement

Work steps:

Complete machining in one work step

- Drill holes
- Threads

Complete machining in several work steps

- Flat surfaces
- Cylindrical surface (circumference)
- Cavities
- Side walls
- Inner radii

Specialities:

- High precise clamping systems
- Heat treatment
- Frequent measurement of specific features

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

High Precision Milling

- Carbide end mills (D_{min} = 0,3 mm; n_{max} = 100.000 min⁻¹)
- Workpiece setup by 3D-tactile probe
- Tool setup by laser-system
- System3R zero-point clamping system (positioning accuracy +/- 2 μm)

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY



Ultra Precision Cutting

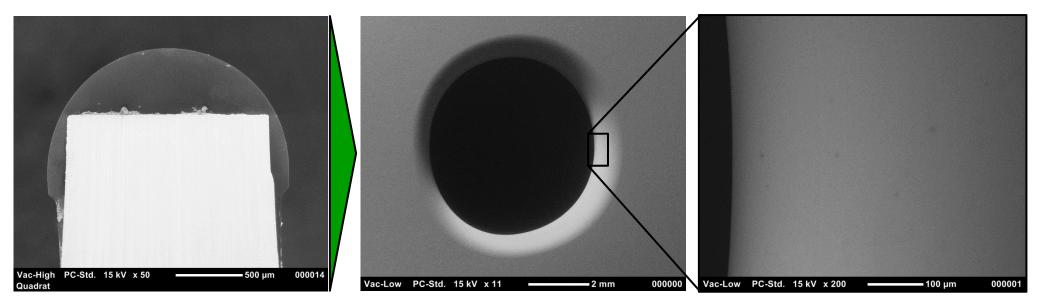
- Diamond turning and milling tools (D_{min} = 3 mm; n_{max} = 75.000 min⁻¹)
- Vacuum-chuck for workpiece (manual positioning)
- Potential automation
 - Automatic workpiece positioning based on sensors for runout and unbalance
 - Automatic tool setup system based on optical relativ-measurement system

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Measures for Quality Control

- Tool measurement before and during work step
- Workpiece measurement before and after work step
- Control of environmental conditions regarding measurement conditions of CERN

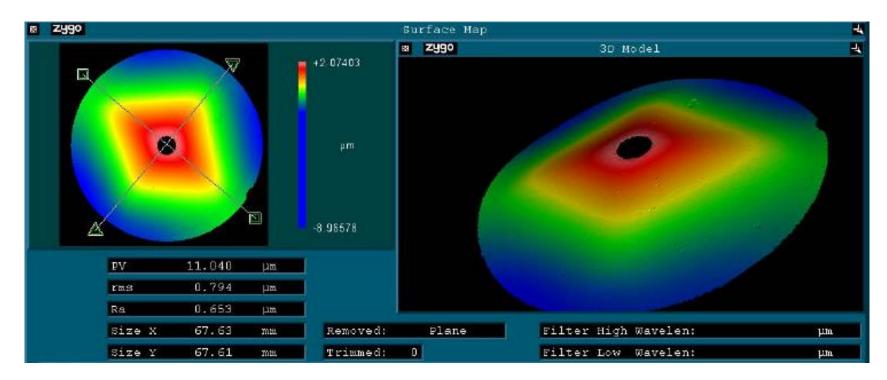
Catypso User Desk - (C) Carl Zeiss - CERN CAD oben Datei Bearbeiten Ansicht Vorbereiten Messen Verkn Caty Carl Caty Caty Catyon Catyon Catyon Catyon Catyon Catyon Catyon Catyon Caty	iipfen Maß griifen Eorm und Lage CNC CAD Extras Planner Fengter Hilfe Info 译 印 合 ① 题 身 ② ① 以 计 题									
Soligeometriedefinition (antasten, eingeben oder einlesen)										
Image: Contract of the second seco	X= 0,000000 Y= 0,00000 Z= 1,20000 D=74,00000									
Z-Wert_Ebene Rand oben										
Messelemente Kommentar Zylinder B D74 außen Kommentar Auswertung Sicherheitsgruppe Sollwertdefinition Sicherheitsgruppe Sollwertdefinition Sicherheitsgruppe Sollwert Sicherheitsgruppe Sollwert Sitwert Stondon Y 0,000000 Z 1,200000 W1 YHZ 0,000000 Raum Achse ± Z Z 0,112700	Toleranzkiassen Fein SO 286 Obere Tol. Untere Tol. Bezeichnung 0.002500 0.002500 0 Durchmesser_Zy									
Startwinke 90,000000 Wkl.Bereich 360,000000	<u>10 mm</u>									
Sigma Form Anz.Pkt.	> 									



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Results Regarding Shape and Roughness – Example Iris

- Specially designed diamond tools
- Flat (milled surface) to iris (turned surface) transition-free



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Typical Error – Flatness after Machining

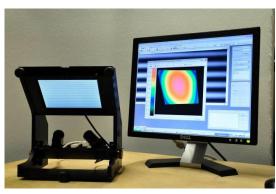
- Machining related stress leads to deformations that follow features
- Flatness measurement in clamping position is (not the best) solution
 - Shape deviation leads to positioning deviations in the stack



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Questions from the feasibility study:

- What are solutions that make the disc manufacturing reliable, reproducible, and cheap?
- What are strategies to minimize the risks due to machine tool breakdowns, staff loss, extended delivery time of tools, and other difficulties?
- Is it possible to design processes based on standard procedures?
- Is it possible to use the particular excellence of various manufacturers in a "virtual facility" based on an international network?



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

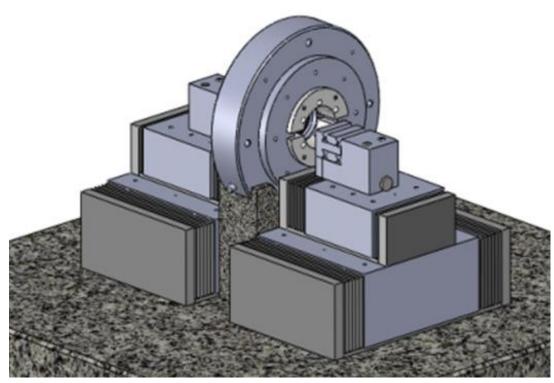
Process Optimization - Increase of the Accuracy of Workpieces by Machine Tool Integrated Measurement

MiniPMD with evaluation screen

Moore Nanotech 350 FG with integrated MiniPMD

Example:

- Machine tool integration of Phase Measuring Deflectometry in an ultra precision machining centre
- Optimization to a so called "MiniPMD"
- Correction cycle for rotationally symmetrical workpieces
- By the correction cycle the shape accuracy could be increased by 65% to 90%, depending on the considered geometry



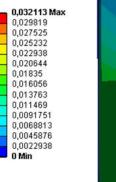
IPK

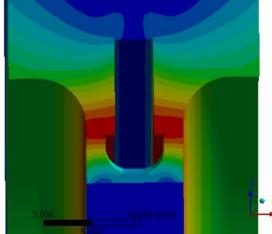
INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

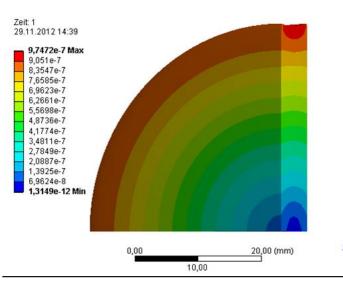
Innovative Machine Tool Concepts for Two-side Machining

Machine tool concept (PCT patent process in progress)

- Simultanous machining of bottom and top surface
- Ultra precise relative positioning of features on bottom side to top side
- Clamping without influence on shape




INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

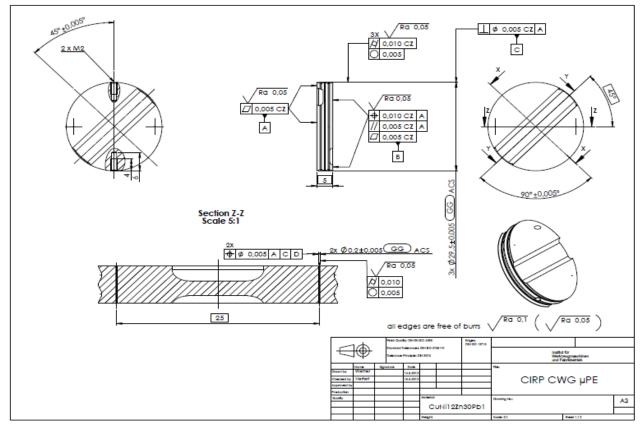


Clamping Force in a Two-side Machining System

Deformation /mm

Simulation of clamping force and resulting deformation

- Workpiece material: Germanium
- Diameter d = 70 mm; width b = 10 mm
- Contact pressure pa= 5,61 · 10⁻³ MPa
- Max. deformation on cylindrical surface $e_{vc} = 0.9$ nm
- Max. deformation on flat surface $e_{vf} = 0.9$ nm
- diameter d = 70 mm; width b = 4 mm
- Contact pressure pa= 1,68 · 10⁻² MPa
- Results:
- Max. deformation on cylindrical surface $e_{vc} = 2,4$ nm
- Max. deformation on flat surface e_{vf} = 2,1 nm



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production in Networks: Evaluation part of the CIRP Collaborative Working Group on Micro Production Engineering

workpiece material: CuNi12Zn30Pb1

Requirements:

- Slightly reduced compared to industrial demands
- Geometrical accuracy
 5 µm to 20 µm
- Arithmetical mean deviation Ra = 50 nm
- All values are oriented towards the state-of-theart results.

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

The CWG's Interlaboratory Comparison

Participants:

- 21 institutions worldwide for manufacturing
- 3 institutions for measurement tasks

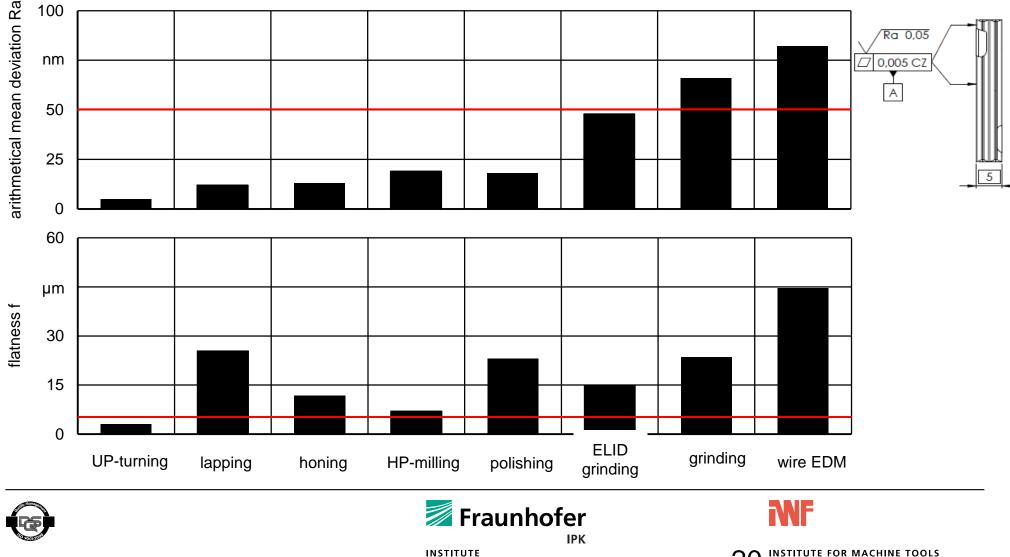
Procedure:

- Investigation of suitable single manufacturing technologies
- Combination of technologies to sequences of production process chains
- Investigation of complete production process chains

Results:

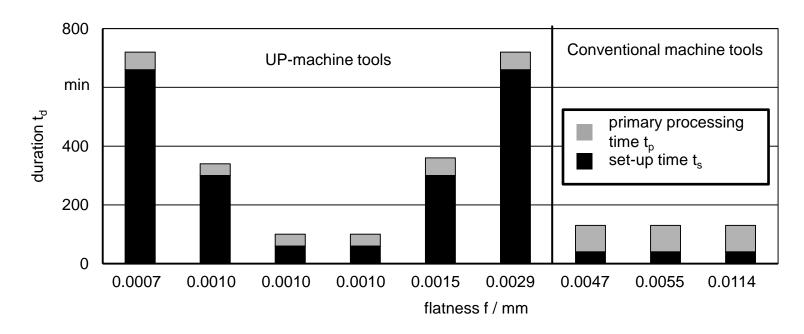
• Will be published in CIRP keynote paper 2016

Uhlmann et. al.: "Process Chains for High-Precision Components with Micro-Scale Features"



IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Capability of Manufacturing Processes (trends) - plane surface -



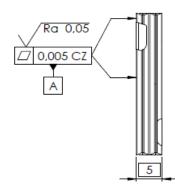
INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

AND FACTORY MANAGEMENT

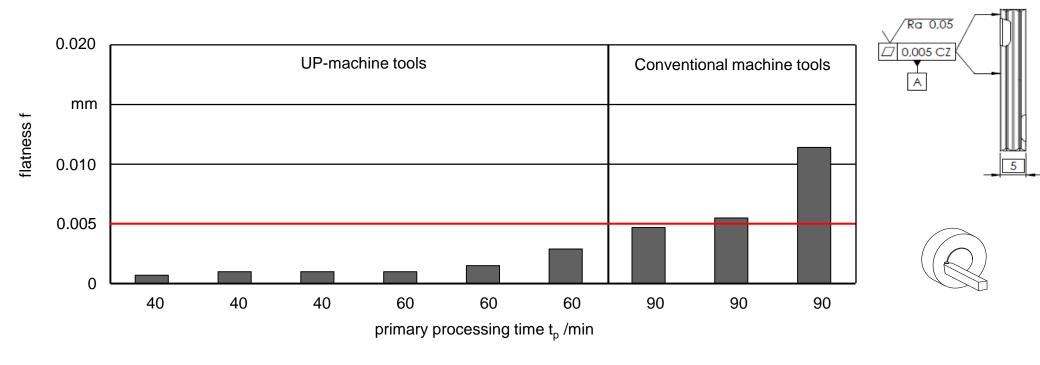
TECHNISCHE UNIVERSITÄT BERLIN

Influence of Machine Tool and Process Duration - turning of plane surface -

- Manufacturing result is independent from the process duration
- Machine tool class determines the result

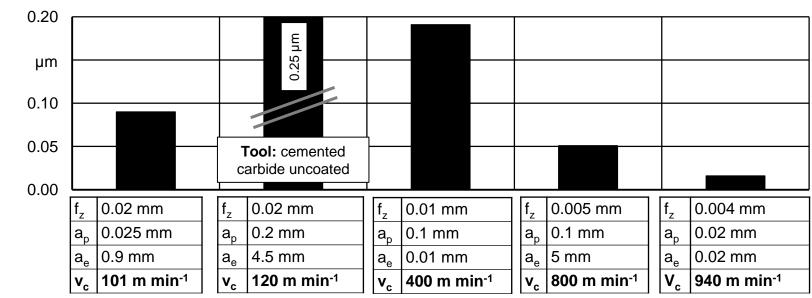


INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY



Influence of Primary Processing Time - turning of plane surface -

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY



Influence of Technological Data on Arithmetical Mean Deviation Ra

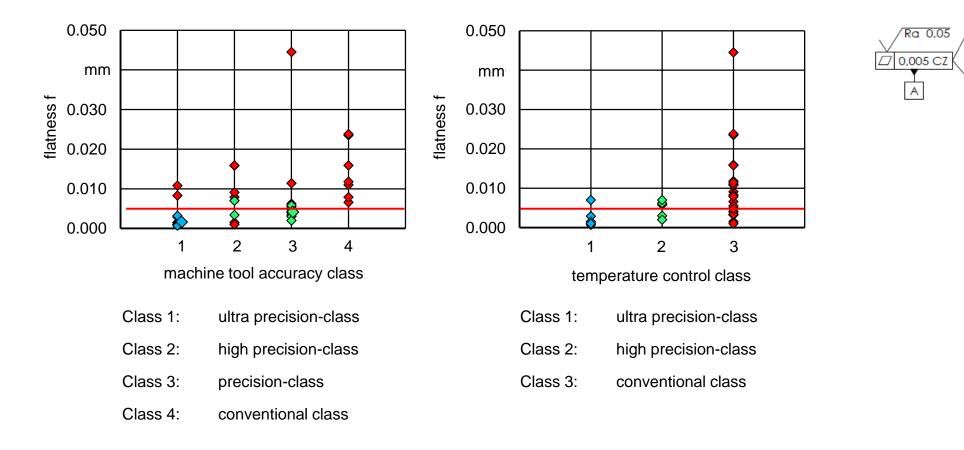
Example high precision milling:

- Tool sharpness, and tool wear resistance influence the result
- Higher cutting speed vc leads to lower surface roughness
- TiAIN coated tungsten carbide tools are better than uncoated tools
- Width of cut ae is of lower importance with respect to the critical chip thickness hmin

INSTITUTE

PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Ra 0,05


0.005 CZ

А

arithmetical mean deviation Ra

Influence of Machine Tool Accuracy and Manufacturing Environment

- machining of plane surface -

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Capability of Series Production by Example of Pre-Machined Blanks

	arith	arithmetical mean deviation Ra									
	flat su	Irface	cylindrical surface								
	MV	U	MV	U							
no.	μm	%	μm	%							
1	0.013257	15	0.009205	15							
2	0.011501	15	0.009572	15							
3	0.010727	15	0.0089	15							
4	0.01133	15	0.009579	15							
5	0.01097	15	0.00945	15							
6	0.012359	15	0.009175	15							
7	0.012132	15	0.009815	15							
8	0.012364	15	0.009608	15							
9	0.011985	15	0.009887	15							
10	0.01395	15	0.009517	15							
11	0.015485	15	0.010043	15							
12	0.01431	15	0.008679	15							
13	0.015851	15	0.010085	15							
14	0.015863	15	0.051345	15							
15	0.012474	15	0.012574	15							
16	0.014176	15	0.011066	15							
17	0.014248	15	0.011034	15							
18	0.013333	15	0.008522	15							
19	0.013385	15	0.009083	15							
20	0.014392	15	0.009528	15							
21	0.014422	15	0.010371	15							
22	0.014219	15	0.00821	15							
23	0.014944	15	0.008791	15							
24	0.013559	15	0.010365	15							
25	0.008173	15	0.061593	15							
26	0.014793	15	0.013695	15							
27	0.013287	15	0.018274	15							

Series production of high quality parts with more than one geometry feature is possible with

- one and the same machine tool of high accuracy
- one standardized technology
- specified tool type
- suitable environmental conditions

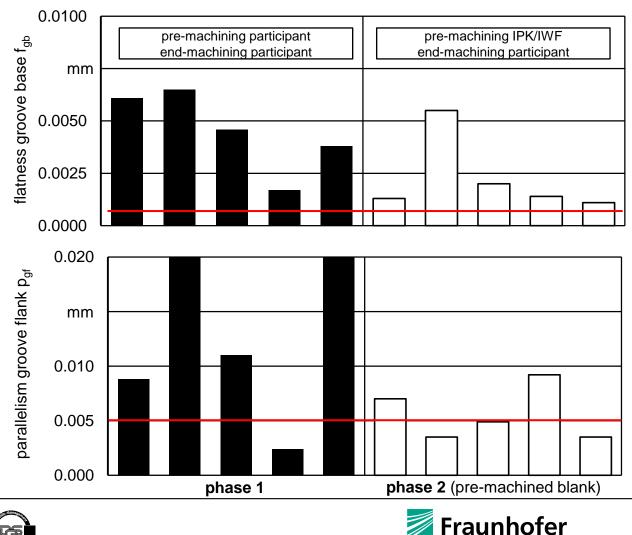
Blanks machined by IPK/IWF

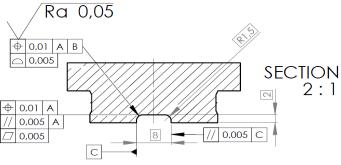
- constant machine tool conditions
- different lots
- different tools of the same specification

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Capability of Series Production by Example of Pre-Machined Blanks

	flatness		cylindrical shape		circularity of midline		deviation of midline of diameter		perpendicularity	
	MV	U	MV	U	MV	U	MV	U	MV	U
no.	in mm	in µm	in mm	in µm	in mm	in µm	in mm	in µm	in mm	in µm
1	0.0007	0.6	0.0051	0.4	0.0027	0.5	29.4984	0.9	0.0005	0.3
2	0.0007	0.8	0.0041	0.4	0.0026	0.4	29.4985	0.9	0.0002	0.3
3	0.0003	0.8	0.0025	0.4	0.0023	0.4	29.4982	0.9	0.0002	0.3
4	0.0007	0.8	0.0022	0.8	0.0008	1.0	29.4984	1.0	0.0005	0.3
5	0.0007	0.7	0.0018	0.8	0.0009	0.9	29.4986	1.0	0.0003	0.3
6	0.0004	0.7	0.0030	0.5	0.0009	0.9	29.4982	0.9	0.0003	0.3
7	0.0005	0.7	0.0013	0.7	0.0010	0.8	29.4982	1.0	0.0004	0.3
8	0.0006	0.7	0.0017	0.7	0.0017	0.5	29.4981	1.0	0.0004	0.3
9	0.0004	0.7	0.0014	0.9	0.0009	0.9	29.4979	1.0	0.0005	0.3
10	0.0007	0.8	0.0030	0.7	0.0006	1.0	29.4977	0.9	0.0004	0.3
11	0.0005	0.7	0.0008	1.0	0.0006	1.0	29.4986	1.0	0.0002	0.3
12	0.0005	0.8	0.0058	1.0	0.0009	1.1	29.4976	0.9	0.0007	0.3
13	0.0005	0.7	0.0021	0.6	0.0008	1.0	29.4980	0.9	0.0006	0.3
14	8000.0	0.8	0.0009	1.0	8000.0	0.8	29.4977	1.0	0.0006	0.3
15	8000.0	0.8	0.0009	1.0	0.0006	1.0	29.4980	1.0	0.0009	0.3
16	0.0005	0.7	0.0165	0.8	0.0007	1.0	29.4983	1.0	0.0004	0.3
17	0.0006	0.8	0.0027	0.6	8000.0	0.9	29.4986	0.9	0.0018	0.3
18	0.0007	0.7	0.0011	0.9	0.0008	1.0	29.4984	0.9	0.0004	0.3
19	0.0005	0.8	0.0012	0.9	0.0008	1.0	29.4982	1.0	0.0002	0.3
20	0.0004	0.8	0.0011	0.9	0.0008	1.0	29.4978	1.0	0.0005	0.3
21	0.0008	0.7	0.0022	0.6	0.0007	1.0	29.4983	0.9	0.0010	0.3
22	0.0009	0.8	0.0013	0.9	0.0008	1.0	29.4984	0.9	0.0003	0.3
23	0.0006	0.7	0.0011	1.0	0.0009	1.0	29.4980	0.9	0.0004	0.3
24	0.0006	0.7	0.0013	0.8	0.0009	0.9	29.4985	1.0	0.0002	0.4
25	0.0024	0.5	0.0013	0.8	0.0012	0.8	29.4979	1.0	0.0013	0.3
26	0.0007	0.7	0.0012	0.9	0.0010	0.9	29.4980	0.9	0.0006	0.3
27	0.0004	0.8	0.0013	0.9	0.0011	0.9	29.4981	0.9	0.0003	0.3





INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Positive Effects while Machining of Grooves in Pre-Machined Blanks by HP-Milling

Phase 1:

 Participants worked with different conditions, based on their own experience

Phase 2:

- Participants worked with comparable conditions:
 - technological parameters
 - milling tools

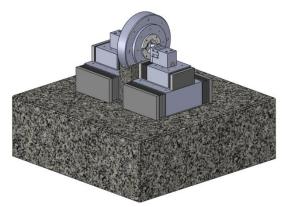
iNF

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

IPK

Summary and Conclusion

- Manufacturing protocols are possible, useful, and realistic.
- Cost effective standardized production of high volumes in specialized facilities provides reliable, reproducible quality.
- Challenges are logistics, handling, clamping.
- Investigations are necessary regarding error detection and suitable compensation.



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Outlook – Proposal for BMBF-Funded Project

Machine tool concept

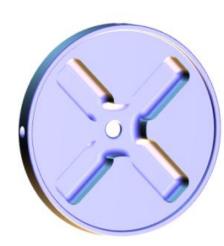
HP-Machining

Approach:

- Uncertainty analysis
- Modelling and simulation of ultra-precision machining
- Analysis of the workpiece material during the machining process
- Statistically verified analysis of manufacturing technologies
- Analysis of measurement methods and determination of the measurement strategies
- Development of a machine tool for two side ultra-precision-machining

IPK

 Design of production process chains for machining of CLIC structures – capability was shown in the CIRP CWG



INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Outlook – Proposal for BMBF-Funded Project

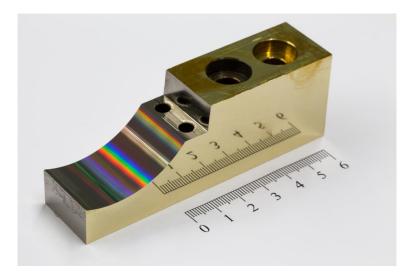
CLIC-part CLIAAS110337

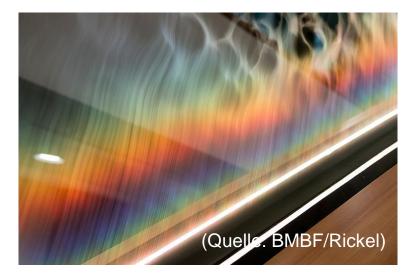
Goals:

- Optimized process chains for manufacturing CLIC-parts and Xband structures (latest design will be provided by CERN)
- Knowledge about manufacturing deviation
- Standardized measurement processes
- Investigations regarding new evaluation methods for CLIC-part machining results
- Cost effective machining:
 - Less influence of personnel due to standardized, automated processes
 - Decreased process duration

IPK

Reduced number of parts out of tolerance





INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Process Example IPK: Injection Molding Tool and Injection Embossing Process for an Art Project at the new BMBF Building

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Fraunhofer IPK

Contact

- Fraunhofer Institute for Production Systems and Design Technology IPK
- Dr.-Ing. Dirk Oberschmidt
- Pascalstrasse 8-9 10587 Berlin
- Phone +49 30 3 90 06-159
- Fax +49 30 3911037
- Email dirk.oberschmidt@ipk.fraunhofer.de
- Internet www.ipk.fraunhofer.de

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

