Improvements and simulations in PLACET

J. Esberg, A. Latina, A. Valloni, D. Pellegrini

CERN, Geneva Switzerland.

January 26, 2015

1 Improvement in RF focusing

2 CSR shielding in the Drive beam complex

Motivation

- Default model of rf focusing in PLACET is not accurate when the energy gain is large compared to the particle energy.
- The default model assumes a constant field in the cavity bulk at the particle position.
- Rosenzweig and Serafini¹ give a way of calculating the average force on a particle travelling in a cavity.
- In e.g. the LHeC test facility, the difference is non negligible. In order to simulate CSR shielding here, we need an extension of PLACET.

Gaussian pillbox

Gauss' law in bulk of cavity

• Gauss' law:
$$\oint \overline{E} \cdot d\overline{A} = \frac{Q}{\epsilon_0} = 0$$

•
$$\Rightarrow \pi r^2 (E_{z,2} - E_{z,1}) + \Delta z 2\pi r E_r = 0$$

•
$$\Rightarrow E_r = -\frac{r}{2} \frac{\Delta E_z}{\Delta z} \to -\frac{r}{2} \frac{\partial E_z}{\partial z}$$

Gauss' law on one of the cavity edges

$$\Rightarrow \pi r^2 E_{z,2} + \Delta z 2\pi r E_r = 0$$

•
$$\Rightarrow E_r = -\frac{r}{2} \frac{E_{z,2}}{\Delta z}$$

•
$$\Delta x' = \frac{eE_r \Delta z}{E} = -\frac{eE_{z,2}}{2\mathcal{E}}r$$

¹J. Rosenzweig and L. Serafini, Transverse particle motion in radio-frequency linear accelerators. Phys. Rev. E **49**, 1599 (1994)

Transport matrices

Prerequisites

•
$$\gamma' = e\mathcal{E}\cos(\phi)/mc^2 = \frac{\Delta E}{L}/mc^2$$
,

•
$$\delta = \frac{\Delta E}{E}, \quad \frac{\gamma_f}{\gamma_i} = 1 + \delta, \quad \frac{\gamma'}{\gamma_i} = \frac{\delta}{L}, \quad \frac{\gamma'}{\gamma_f} = \frac{\delta}{1+\delta}\frac{1}{L}$$

•
$$\alpha = \sqrt{\frac{\eta}{8}} \frac{1}{\cos(\phi)} \ln\left(\frac{\gamma_f}{\gamma_i}\right)$$

• $\eta = 1$ for a π -mode cavity.

A solution to the equations of motion

• The cavity bulk has the transport matrix

$$K_{center} = \begin{bmatrix} \cos(\alpha) & \sqrt{\frac{8}{\eta}} \frac{\gamma_i}{\gamma'} \cos(\phi) \sin(\alpha) \\ -\sqrt{\frac{\eta}{8}} \frac{\gamma'}{\gamma_f \cos(\phi)} \sin(\alpha) & \frac{\gamma_i}{\gamma_f} \cos(\alpha) \end{bmatrix}$$
(1)
$$= \begin{bmatrix} \cos(\alpha) & \sqrt{\frac{8}{\eta}} \frac{L}{\delta} \cos(\phi) \sin(\alpha) \\ -\sqrt{\frac{\eta}{8}} \frac{\delta}{1+\delta} \frac{1}{L} \frac{\sin(\alpha)}{\cos(\phi)} & \frac{1}{1+\delta} \cos(\alpha) \end{bmatrix}$$
(2)

• At the edges are simple angular kicks $K_{initial} = \begin{bmatrix} 1 & 0 \\ -\frac{\gamma'}{2\gamma_i} & 1 \end{bmatrix}$, $K_{final} = \begin{bmatrix} 1 & 0 \\ \frac{\gamma'}{2\gamma_j} & 1 \end{bmatrix}$,

Transport matrices

Prerequisites

•
$$\gamma' = e\mathcal{E}\cos(\phi)/mc^2 = \frac{\Delta E}{L}/mc^2$$

•
$$\delta = \frac{\Delta E}{E}, \quad \frac{\gamma_f}{\gamma_i} = 1 + \delta, \quad \frac{\gamma'}{\gamma_i} = \frac{\delta}{L}, \quad \frac{\gamma'}{\gamma_f} = \frac{\delta}{1+\delta}\frac{1}{L}$$

•
$$\alpha = \sqrt{\frac{\eta}{8}} \frac{1}{\cos(\phi)} \ln\left(\frac{\gamma_f}{\gamma_i}\right)$$

• $\eta = 1$ for a π -mode cavity.

A solution to the equations of motion

•
$$K_{i,half} = \begin{bmatrix} \cos(\alpha) - \sqrt{\frac{2}{\eta}}\cos(\phi)\sin(\alpha) & \frac{L/2}{\delta}\sqrt{\frac{8}{\eta}}\sin(\alpha)\cos\phi \\ -\frac{\delta}{1+\delta}\frac{1}{L/2}\left[\frac{\cos(\alpha)}{2} + \sqrt{\frac{\eta}{8}}\frac{\sin(\alpha)}{\cos(\phi)}\right] & \frac{\cos(\alpha)}{1+\delta} \end{bmatrix},$$

•
$$K_{f,half} = \begin{bmatrix} \cos(\alpha) & \frac{L/2}{\delta}\sqrt{\frac{8}{\eta}}\sin(\alpha)\cos(\phi) \\ \frac{\delta}{1+\delta}\frac{1}{L/2}\left[\frac{\cos(\alpha)}{2} - \sqrt{\frac{\eta}{8}}\frac{\sin(\alpha)}{\cos(\phi)}\right] & \frac{1}{1+\delta}\left[\cos(\alpha) + \sqrt{\frac{2}{\eta}}\cos\phi\sin\alpha\right] \end{bmatrix},$$

• It has been numerically verified that $K_{center} = K_{f,half}K_{i,half}$ for all $\{\delta, \phi\}$ as long as the relative energy change of the first half is $1 + \delta/2$ and the second half $(1 + \delta)/(1 + \delta/2)$

Transport matrices

Prerequisites

•
$$\gamma' = e\mathcal{E}\cos(\phi)/mc^2 = \frac{\Delta E}{L}/mc^2$$

•
$$\delta = \frac{\Delta E}{E}, \quad \frac{\gamma_f}{\gamma_i} = 1 + \delta, \quad \frac{\gamma'}{\gamma_i} = \frac{\delta}{L}, \quad \frac{\gamma'}{\gamma_f} = \frac{\delta}{1+\delta} \frac{1}{L}$$

•
$$\alpha = \sqrt{\frac{\eta}{8}} \frac{1}{\cos(\phi)} \ln\left(\frac{\gamma_f}{\gamma_i}\right)$$

• $\eta = 1$ for a π -mode cavity.

A solution to the equations of motion

• Limiting cases, $\cos(\phi) \to 0$, $\delta = \frac{G}{E_i} \cos(\phi) L/2$, $\alpha \to \sqrt{\frac{\eta}{8}} \frac{GL}{2E_i}$. δ is small, but α is not necessarily small.

$$\begin{split} K_{i,half} &\to \left[\begin{array}{cc} \cos(\alpha) & \frac{E_i}{G}\sqrt{\frac{8}{\eta}}\sin(\alpha) \\ -\frac{G}{E_i}\sqrt{\frac{\eta}{8}}\sin(\alpha) & \cos(\alpha) \end{array} \right] \\ K_{f,half} &\to \left[\begin{array}{cc} \cos(\alpha) & \frac{E_i}{G}\sqrt{\frac{8}{\eta}}\sin(\alpha) \\ -\frac{G}{E_i}\sqrt{\frac{\eta}{8}}\sin(\alpha) & \cos(\alpha) \end{array} \right] \end{split}$$

Prerequisites

•
$$\gamma' = e\mathcal{E}\cos(\phi)/mc^2 = \frac{\Delta E}{L}/mc^2$$
,

• $\delta = \frac{\Delta E}{E}, \quad \frac{\gamma_f}{\gamma_i} = 1 + \delta, \quad \frac{\gamma'}{\gamma_i} = \frac{\delta}{L}, \quad \frac{\gamma'}{\gamma_f} = \frac{\delta}{1+\delta} \frac{1}{L}$

•
$$\alpha = \sqrt{\frac{\eta}{8}} \frac{1}{\cos(\phi)} \ln\left(\frac{\gamma_f}{\gamma_i}\right)$$

• $\eta = 1$ for a π -mode cavity.

Checks of the properties of the transport matrix

• Limiting case, $\delta \ll 1, \phi = 0 \rightarrow \sin(\alpha) \approx \alpha$. This is the original model of focusing in PLACET

•
$$K_{center} = \begin{bmatrix} 1 & \frac{L\ln(1+\delta)}{\delta} \\ 0 & \frac{1}{1+\delta} \end{bmatrix}$$

• Reduces to a drift when $\delta = 0$.

Numerical method

Recipe

- Longitudinal wakefields pose a problem when the phase is $\pi/2$ if they are included in δ , e.g if $\delta = \frac{G}{E_i} \cos(\phi) L/2 + \frac{\Delta E_{wf}}{E_i}$.
- This would lead to infinite angular kicks when the phase is zero.
- Thus, the following method is imployed (order of operations is chosen to match existing implementation of cavity focusing):
 - **)** Calculate wake ΔE_{wf} for first half of the magnet at the magnet entrance.
 - 2 Apply transport matrix to center of magnet excluding the effect of the wake.
 - **3** Apply longitudinal wakes and accelerating field for the first half of cavity.
 - 4 Calculate and apply all transverse wakes.
 - **6** Apply any dipolar kicks.
 - **6** Calculate wake ΔE_{wf} for second half of the magnet.
 - Apply transport matrix to end of magnet excluding the effect of the wake.
 - 8 Apply longitudinal wakes and accelerating field for the second half of cavity.

Alternate focusing switched on with the boolean pi_mode in PLACET.

- Compare the twiss parameters of various programs.
- PLACET beam parameters are calculated on basis of the beam (dispersion subtracted).
- PTC agrees qualitatively with the original PLACET focusing.
- ELEGANT and PLACET with pi_mode true give similar results.
- Energy $5.511 \text{MeV} \rightarrow 306 \text{MeV}$.

Machine layout

- Compare the twiss parameters of various programs.
- PLACET beam parameters are calculated on basis of the beam (dispersion subtracted).
- PTC agrees qualitatively with the original PLACET focusing.
- ELEGANT and PLACET with pi_mode true give similar results.
- Energy $5.511 \text{MeV} \rightarrow 306 \text{MeV}$.

Horizontal Beta

- Compare the twiss parameters of various programs.
- PLACET beam parameters are calculated on basis of the beam (dispersion subtracted).
- PTC agrees qualitatively with the original PLACET focusing.
- ELEGANT and PLACET with pi_mode true give similar results.
- Energy $5.511 \text{MeV} \rightarrow 306 \text{MeV}$.

Vertical Beta

- Compare the twiss parameters of various programs.
- PLACET beam parameters are calculated on basis of the beam (dispersion subtracted).
- PTC agrees qualitatively with the original PLACET focusing.
- ELEGANT and PLACET with pi_mode true give similar results.
- Energy 5.511MeV \rightarrow 306MeV.

Horizontal Alpha

- Compare the twiss parameters of various programs.
- PLACET beam parameters are calculated on basis of the beam (dispersion subtracted).
- PTC agrees qualitatively with the original PLACET focusing.
- ELEGANT and PLACET with pi_mode true give similar results.
- Energy 5.511MeV \rightarrow 306MeV.

Vertical Alpha

Possible extension

• If one knows the Floquet form of the longitudinal field (at the position of the particle)

$$E_{z} = E_{0}Re\left[\sum_{n=-\infty}^{\infty} b_{n} \exp(i(\omega t - k_{n}z))\right] = E_{0}Re\left[\sum_{n=-\infty}^{\infty} b_{n} \exp\left[i\left(2\pi n\frac{z}{d} + \phi\right)\right]\right]$$

where d is the cell length.

• One can determine the effect on the focusing through the parameter *η*.

$$\eta(\phi) = \sum_{n=1}^{\infty} b_n^2 + b_{-n}^2 + 2b_n b_{-n} \cos(2\phi)$$

- Simple for a π -mode cavity: In this case $b_0 = b_{-1} = 1$, all other coefficients are 0.
- Travelling wave cavity: $b_0 = 0$, all other coefficients are $0 \rightarrow \eta = 0 \rightarrow$, the matrix reduces to the default PLACET focusing.
- HOMs are not implemented in PLACET, but could readily be added.

• Improvement in RF focusing

2 CSR shielding in the Drive beam complex

CSR shielding in the DB complex

- Since CSR shielding in PLACET, we can apply it to simulations of the drive beam.
- Beam energy loss becomes smaller because it is travelling between parallel plates.
- An approximation, but gives a good idea about the behavior of the process.
- Let us apply the shielding to a section of the recombination complex as shown below.

Schematic view of the simulated lattice

Figure: Three turns in the first combiner ring.

Some results

- With a factor 2 decompressed realistic bunch bunch the beneficial effects of shielding begins with larger plate separations.
- With a short bunch, one can almost recover the emittance growth due to csr, but this occurs at very small plate separations.

Variation with shielding height

- Emittance growth budget for the entire recombination complex is approximately 100nm rad.
- Use a realistic beam and see the behavior with respect to varying the distance between the parallel plates.

Horizontal ϵ growth

Vertical ϵ growth

Some results

- Set the parallel plate separation to 4cm.
- Increasing the Gaussian bunch length by a factor 2 decreases the emittance growth by around a factor 4, in the shielded case.
- The decrease in emittance growth for the non-shielded CSR wake is slightly less steep.
- The emittance growth is approximately linear in the incoming emittance.

Variation with bunch length

- Emittance growth budget for the entire recombination complex is approximately 100nm rad.
- Observe the effect of increasing the Gaussian bunch length with and without shielding.

Horizontal ϵ growth

Vertical ϵ growth

- A model that efficiently and accurately models cavity focusing has been implemented in placet
- Works in cases where the energy gain is comparable to the particle energy.
- Also simulates off phase particles.
- Only models π -mode standing wave cavities accurately.
- The model does however allow for higher order modes. Possibility to model travelling wave cavities and cavities with several modes if needed.
- CSR shielding decreases the emittance growth in the drive beam complex by a significant amount.
- An increase of at least a factor 2 in bunch length from the DBL seems to be necessary even with shielding.