New Insights into Confinement

The Irish poet, William Butler Yeats was prescient. In 1920 he described the Yang Mills phase transition in his apocalyptic poem *Second Coming*:

“Things fall apart; the centre cannot hold”

A. Armoni, TDC, S. Sen ArXive 1502.0136
New Insights into Confinement

The Irish poet, William Butler Yeats was prescient. In 1920 he described the Yang Mills phase transition in his apocalyptic poem *Second Coming*:

“Things fall apart; the centre cannot hold”

Yeats won the Nobel Prize in 1923 for his work but, inexplicably, it was in literature rather than physics.

A. Armoni, TDC, S. Sen ArXive 1502.0136
New Insights into Confinement
New Insights into Old Insights into Confinement
An Overview
An Overview

• This talk explores indicators of confinement and their relationship with center symmetry
An Overview

• This talk explores indicators of confinement and their relationship with center symmetry

 The focus is on two distinct aspects

 – Area laws of Wilson loops and the pattern of which ones are equal and also which ones nonzero.

 – The emergence of a Hagedorn spectrum at large N_c for confining gauge theories
What is confinement in QCD?

This is a very deep question and it is not completely clear how to even define it.

Instead of trying to tease this out directly, it may be useful look at…
What is confinement in QCD?

This is a very deep question and it is not completely clear how to even define it.

Instead of trying to tease this out directly, it may be useful look at...

A cartoon version of confinement

An unbroken Zn symmetry or an area law for the Wilson loop.

Of interest mostly to theorists looking at simplified limits or theories other than QCD!
What is confinement in QCD?

This is a very deep question and it is not completely clear how to even define it.

Instead of trying to tease this out directly, it may be useful look at...

A cartoon version of confinement:
- An unbroken Zn symmetry or an area law for the Wilson loop.
- Of interest mostly to theorists looking at simplified limits or theories other than QCD!

These cartoon theories can bring out issues of confinement in a starker form than QCD.
PART I—AREA LAWS AND CENTER SYMMETRY

• A useful strategy is to concentrate on theories that have area laws for Wilson loops but are not invariant under all transformations associated with the center of the gauge group.
• A useful strategy is to concentrate on theories that have area laws for Wilson loops but are not invariant under all transformations associated with the center of the gauge group.

• Focus is on SU(Nc) gauge theories with matter in various representations. Theories exist which have area laws but are not invariant under the center of the gauge group. However, they all have some kind symmetry—they are invariant under a nontrivial subgroup of the center. Moreover, key aspects of the theories are controlled by the nature of this subgroup.
Note that the representations consistent with asymptotic freedom are very limited in 3+1 space-time dimensions but in low dimensions many possibilities are allowed. It is worth exploring these to get insight into general problem.
• Note that the representations of matter fields consistent with asymptotic freedom are very limited in 3+1 space time dimensions but in low dimensions many possibilities are allowed. It is worth exploring these to get insight into general problem.

• For example: an SU(3) Yang Mills theory in 3+1 space-time dimensions, an SU(12) gauge theory with quarks in a 3-index symmetric representation in 2+1 space-time dimensions and an SU(15)) gauge theory with quarks in both a 12-index antisymmetric representation and a 9-index symmetric representation in 2+1 space-time dimensions all share Z_3 as their maximum center.
• Note that the representations consistent with asymptotic freedom are very limited in 3+1 space
time dimensions but in low dimensions many possibilities are allowed. It is worth exploring these
to get insight into general problem.

• For example: an SU(3) Yang Mills theory in 3+1 space-time dimensions, an SU(12) gauge theory with quarks
in a 3-index symmetric representation in 2+1 space-time dimensions and an SU(15)) gauge theory with
quarks in both a 12-index antisymmetric representation and a 9-index symmetric representation in 2+1 space-time dimensions all
share \(Z_3 \) as their maximum center.

• Are there properties of Wilson loops that these theories share as a result of this symmetry?
• Note that the representations consistent with asymptotic freedom are very limited in 3+1 space time dimensions but in low dimensions many possibilities are allowed. It is worth exploring these to get insight into general problem.

• For example: an SU(3) Yang Mills theory in 3+1 space-time dimensions, an SU(12) gauge theory with quarks in a 3-index symmetric representation in 2+1 space-time dimensions and an SU(15)) gauge theory with quarks in both a 12-index antisymmetric representation and a 9-index symmetric representation in 2+1 space-time dimensions all share Z_3 as their maximum center.

• Are there properties of Wilson loops that these theories share as a result of this symmetry?

• If so, what are they?
A New Result

An $\text{Su}(\text{Nc})$ gauge theory with matter fields has the \mathbb{Z}_{Nc} center symmetry of the gauge theory broken to a maximum subgroup of \mathbb{Z}_p by the matter fields. The string tension for representation R is given by

$$\sigma_R = \sigma_F \frac{x_R g(x_R)}{(p-1)g(p-1)} \quad \text{with}$$

$$x_R = p_R(p - p_R) \quad \text{where} \quad p_R = n_R \mod(p)$$

n_R is n-ality of the representation

g is a function which depends on the theory.
• The remainder of this section will explain what that formula means.

• Key point in this is the relevant thing in determining which string tensions are the same is p where Z_p is maximum subgroup of the center preserved in the presence of matter—and not Nc which specifies the gauge group.
• This rule, says for example that all of those theories which have are invariant under a maximum subgroup of the center given by \mathbb{Z}_3 have the property that

- the string tension for all representations whose n-ality is multiple for three vanish.
- the string for all other representations are the same.

• This holds regardless of the value of N_c of the gauge group
A review:

Some basic and well-known facts about Wilson loops, n-ality, center symmetry and all that
• Wilson Loop is the trace of a Wilson line defined over a closed curve C; it is gauge invariant.

$$W \equiv \text{tr} \left(P \exp \left(i \oint_C A_\mu^a \lambda^a \, dx_\mu \right) \right)$$

where P means path-ordered product and λ are Gell-Mann matrices.

Associated with the exponential of minus the action for separating a fundamental color charge (e.g. an infinitely heavy nodynamical quark) from its anticharge, moving it around C in a gauge invariant way and then annihilating against the antiquark.
Consider the Wilson loop over a large space-time rectangle; if the theory has linear confinement with a string tension σ, action $\sim \sigma L T \sim \sigma A$ so and we expect $W \sim e^{-\sigma A}$.

An area law for the Wilson loop corresponds to a non-vanishing string tension.

The area law in YM follows from the fact that the flux tube cannot break since there are no fundamental charges in a pure YM theory.
• Note the idea can be generalized for color sources of any representation \(R \)

\[
W_R \equiv \text{tr} \left(P \exp \left(i \oint C A^a_\mu T^a_R \, dx_\mu \right) \right)
\]

\(T_R \) are matrices for the generators in representation \(R \)

\[
\sigma_R \equiv \lim_{A \to \infty} \left(- \frac{\log(\langle W_R \rangle)}{A} \right)
\]

\(\sigma_R \) is the string tension for separating color charges in representation \(R \).
• For the adjoint representation σ_{Adj} is zero and there is no area law.

– Physically this is because a flux tube with an adjoint source can break: gluons can pop out of the vacuum and can cap the broken ends.

– Thus at long distances it becomes cheaper energetically to make gluons and break the flux tube then to let the flux tube grow.
The n-ality of a representation is the number of fundamental representation one needs to combine to make the representation (i.e. number of boxes in the Young tableau); it is defined modulo N_c.

N-ality
N-ality

- The n-ality of a representation is the number of fundamental representation one needs to combine to make the representation (i.e. number of boxes in the Young tableau); it is defined modulo N_c.

For example:

- The fundamental representation (quarks) are n-ality 1.
- The adjoint representation (gluons) are n-ality 0.
- Two index representations are n-ality 2.
By construction in a Clebsch-Gordan decomposition

\[R_1 \otimes R_2 = \sum_i R_i \quad \text{the n-alities add mod } N_c : \]

\[N[R_i] = \text{mod}[N[R_1] + N[R_2], N_c] \]

Thus adding gluons (which have n-ality of zero) to any configuration cannot change the configuration’s n-ality.

Moreover, it can be shown that by adding gluons one can obtain all representations with the same n-ality.
• An implication:
 – The string tension for representation R depends only on the n-ality of R.
 • Key point: by adding gluons popped out of the vacuum one can get from a source in a given representation to any representation with the same n-ality.
 • Thus at long distance the string tension will be the of the lowest energy representation of fixed n-ality.
Center Transformations

• Center transformations are naturally considered for finite time dimension and some kind of periodic b.c.

• Field theories in Euclidean space with periodic b.c. in time for the bosons and anti-periodic for fermion correspond to finite temperature theory with the extent of the time direction, β, being the inverse temperature. We take β to zero at end of problem to get zero temp.
• **What is center the of a group?**

 – The center of a group is the set of elements in the group which commute with all the elements of the group.

 – For \(\text{SU}(N_c) \) the center is \(Z_{N_c} \). Namely \(C \) is an element of the center iff \(C = z_j I_{N_c} \times_{N_c} \) with \(z_j^{N_c} = 1 \) so that \(z_j = e^{i(2\pi j / N_c)} \)
• **What is center the of a group?**
 – The center of a group is the set of elements in the group which commute with all the elements of the group.
 – For SU(Nc) the center is Z_{Nc}. Namely C is an element of the center iff $C = z_j \mathbb{1}_{Nc \times Nc}$ with $z_j^{Nc} = 1$ so that $z_j = e^{i(2\pi j / Nc)}$

• **What is a center transformation in a gauge theory?**

 $$A_\mu \rightarrow A'_\mu \equiv \Omega A_\mu \Omega^+ - \Omega \partial_\mu \Omega^+$$

 with $\Omega(\vec{x}, t + \beta) = C\Omega(\vec{x})$

 where C is an element of the center and Ω is an arbitrary matrix-valued function subject to these boundary conditions.
What is center the of a group?

- The center of a group is the set of elements in the group which commute with all the elements of the group.
- For SU(Nc) the center is Z_{Nc}. Namely C is an element of the center iff $C = z_j I_{Nc} \times Nc$ with $z_j^{Nc} = 1$ so that $z_j = e^{i(2\pi j / Nc)}$

What is a center transformation in a gauge theory?

$$A_\mu \rightarrow A'_\mu \equiv \Omega A_\mu \Omega^+ - \Omega \partial_\mu \Omega^+$$

with $\Omega(x, t + \beta) = C \Omega(x)$

where C is an element of the center and Ω is an arbitrary matrix-valued function subject to these boundary conditions.

- This looks just like a gauge transformation (and hence unphysical) but in a periodic theory, true gauge transformations are periodic whereas this is not unless C is the unit element.
- Key thing for Yang-Mills: easy to show that if A is periodic so is A thus center transformations are consistent with b.c.
Facts about Yang-Mills Theory:

- Pure SU(Nc) Yang-Mills theory, is invariant under a Z_{Nc} center transformations. Since action is unchanged and gluon fields after center transformation satisfy boundary conditions.

- Pure Yang-Mills has an area law for Wilson loops in the fundamental representation. There is also an area law for all other representations with non-zero n-ality.
Facts about Yang-Mills Theory:

- Pure SU(Nc) Yang-Mills theory, is invariant under a \mathbb{Z}_{Nc} center transformations. Since action is unchanged and gluon fields after center transformation satisfy boundary conditions.
- Pure Yang-Mills has an area law for Wilson loops in the fundamental representation. There is also an area law for all other representations with non-zero n-ality.

Is the area law connected to the center?
Facts about Yang-Mills Theory:

- Pure SU(Nc) Yang-Mills theory, is invariant under a \(Z_{Nc} \) center transformations. Since action is unchanged and gluon fields after center transformation satisfy boundary conditions.

- Pure Yang-Mills has an area law for Wilson loops in the fundamental representation. There is also an area law for all other representations with non-zero n-ality.

Is the area law connected to the center?

Note that theories with matter fields with n-ality other than zero are NOT invariant under center transformations. Consider quark fields with n-ality \(n_q \). Under center transformations they pick up a factor of \((z_i)^{nq} \).
Why are these theories not center invariant?

Recall the transformation of gluons under a center transformation:

\[A_\mu \rightarrow A'_\mu \equiv \Omega A_\mu \Omega^+ - g\Omega \partial_\mu \Omega^+ \]

with \(\Omega(\vec{x}, t + \beta) = C\Omega(\vec{x}) \)

Except for the boundary conditions this looks like a gauge transformation. This will leave the action invariant only if the matter fields transform via the same “gauge transformation”

\[q(\vec{x}, t) \rightarrow q'(\vec{x}, t) \text{ under } \Omega \]

so if \(q(\vec{x}, t + \beta) = -q'(\vec{x}, t) \)

then \(q'(\vec{x}, t + \beta) = -\left(z_j\right)^{n_q} q'(\vec{x}, t) \text{ with } z_j = e^{i(2\pi j/Nc)} \)

But this means that for \((z_i)^n = 1\), \(q'\) does not satisfy the boundary conditions and the transformation is not allowed.
• While for $n_q \neq 0$, such theories are not invariant under transformations of the full center, they may be invariant under transformations associated with a subgroup of the center

 – For example, in theories in which all matter fields have the same n-ality the subgroup of the center preserved is Z_p with $p = \text{gcf} (n_q, Nc)$ where gcf is greatest common factor.

• Eg. For $n_q = 3$ and $Nc=15$, $p=3$
While for $n_q \neq 0$, such theories are not invariant under transformations of the full center, they may be invariant under transformations associated with a subgroup of the center.

- For example, in theories in which all matter fields have the same n-ality the subgroup of the center preserved is Z_p with $p = \text{gcf} \,(n_q, Nc)$ where gcf is greatest common factor.

 • Eg. For $n_q = 3$ and $Nc=15$, $p=3$

Note that the matter also act to screen color charges in various representations causing some color charges to vanish and others to be equal.
• The inclusion of the matter fields in a gauge theory both
 – reduces the allowable center transformations to a subgroup of the center.
 – by screening the color charge, act to alter the pattern of which representations string tensions are the identical (and also which are zero)
• The inclusion of the matter fields in a gauge theory both
 – reduces the allowable center transformations to a subgroup of the center.
 – by screening the color charge, act to alter the pattern of which representations string tensions are the identical (and also which are zero)

• The nontrivial point derived via elementary number theoretic consideration in Phys. Rev. D 90, 047703 (2014) is that the way these two things happen are strongly connected so that all theories with same maximum subgroup of the center share patterns for string tensions regardless of the N_c of the gauge group.
\[\sigma_R = \sigma_F \frac{x_R g(x_R)}{(p-1)g(p-1)} \]

with \(Z_p \) the maximum subgroup of the center

\[x_R = p_R (p - p_R) \quad \text{where} \quad p_R = n_R \mod(p) \]
\[\sigma_R = \sigma_F \frac{x_R g(x_R)}{(p-1)g(p-1)} \quad \text{with } Z_p \text{ the maximum subgroup of the center} \]

\[x_R = p_R(p - p_R) \quad \text{where } p_R = n_R \mod(p) \]

Thus, for example all theories which preserve a maximum \(Z_5 \) subgroup of the center have three distinct string tensions depending on the \(n \)-ality of \(R \):

\[\sigma = 0 \text{ for all } n \text{-ality divisible by 5} \]

\[\sigma = \sigma_1 \text{ for all } n \text{-ality with remainder of 1 or 4 when dividing by 5} \ (n_R=1,4,6,9,11,14,16,19, 21, 24...) \]

\[\sigma = \sigma_2 \text{ for all } n \text{-ality with remainder of 2 or 3 when dividing by 5} \ (n_R=2,3,7,8,12,13,17,18, 22, 23...) \]
The fact that the pattern of which string tensions are equal depends on the maximum subgroup of the center of the theory helps make clear the connection of confinement and center symmetry.

Note that if there is no nontrivial subgroup of the center left invariant all string tensions vanish.
The fact that the pattern of which string tensions are equal depends on the maximum subgroup of the center of the theory helps make clear the connection of confinement and center symmetry.

Note that if there is no nontrivial subgroup of the center left invariant all string tensions vanish.

An update of *Second Coming*:
“Things fall apart; a nontrivial subgroup of the centre cannot hold”
A Hagedorn spectrum is one in which the number of hadrons with mass less than m, $N(m)$, grows exponentially with m
Phenomenological support from the hadronic spectrum

Get data from the Particle Data Book

$N(m)$, the integrated number of mesons with mass less than m

From TDC & Vojtech Krejcirik (2011)
• Concept of a Hagedorn spectrum is intellectually muddied since hadrons are resonances not bound states and masses are not well-defined—except in large Nc limit.

• For large Nc gauge theories there is a set of criteria which if satisfied imply a Hagedorn spectrum (TDC JHEP 1006 (2010) 098, TDC & V Krejcirik JHEP 1108 (2011) 138). These include the theories being asymptotically free and confining in the sense of all states being color singlet, but do not explicitly require center symmetry.
Confinement, QCD Strings and Hagedorn Spectra at Large Nc

• Hadronic strings are thought to emerge due to confinement in QCD as flux tubes.
• Picture becomes valid when excitations are high enough so that the length of the flux tube is much bigger than its width and string motion dominates
 – At large Nc, strings do not break and string picture should hold
 – Dynamics of flux tubes might then be expected to give excitation spectrum of hadrons.
 • Mesons are open strings.
 • Glueballs are closed strings.
• Flux tubes in QCD are only a sensible description for highly excited hadronic states.

• Restriction to highly excited states critical for stringy description as well: string theory in four dimension is diseased for low-lying states (tachyons, massless spin 2 state…)
• Flux tubes in QCD are only a sensible description for highly excited hadronic states.

• Restriction to highly excited states critical for stringy description as well: string theory in four dimension is diseased for low-lying states (tachyons, massless spin 2 state…)

 – One might hope that a theory which approaches a string theory in four dimensions might work for highly excited states

 – If so, highly excited states in QCD should be stringy and the emergent string theory for highly excited states would be expected to have a Hagedorn spectrum since transverse vibrations of a string theory with unbreakable strings is known to have a Hagedorn spectrum in greater than 1+1 dimension.
• If Hagedorn spectrum of large Nc gauge theory is due to its stringy nature one might expect it to be tied to center symmetry, since center symmetry is tied to string tension.
• If Hagedorn spectrum of large N_c gauge theory is due to its stringy nature one might expect it to be tied to center symmetry, since center symmetry is tied to string tension.

• A recent survey of a wide class of large N_c gauge theories showed that all theories considered for which a Hagedorn spectrum could be deduced from the general argument either had an explicit center symmetry or an emergent one in the large N_c limit and conversely confining theories with an explicit or emergent center had a Hagedorn spectrum.
• If Hagedorn spectrum of large N_c gauge theory is due to its stringy nature one might expect it to be tied to center symmetry, since center symmetry is tied to string tension.

• A recent survey of a wide class of large N_c gauge theories showed that all theories considered for which a hagedorn spectrum could be deduced from the general argument either had an explicit center symmetry or an emergent one in the large N_c limit and conversely confining theories with an explicit or emergent center had a hagedorn spectrum.

 – In this context an emergent symmetry means that as N_c becomes large, a nontrivial class of correlation functions become identical to correlators in a theory with an explicit center up to corrections which vanish as $N_c \to \infty$.

Note that these emergent centers can be highly nontrivial. For example, SU(Nc) gauge theories with quarks in 2-index representations have correlators which become equivalent to those of a center symmetric theory with quarks in the adjoint.
Note that these emergent centers can be highly nontrivial. For example, SU(Nc) gauge theories with quarks in 2-index representations have correlators which become equivalent to those of a center symmetric theory with quarks in the adjoint.

Remarkably, the existence of a center symmetry appears to be the key rather stringy dynamics.
– Note that these emergent centers can be highly nontrivial. For example, SU(Nc) gauge theories with quarks in 2-index representations have correlators which become equivalent to those of a center symmetric theory with quarks in the adjoint.

• Remarkably, the existence of a center symmetry appears to be the key rather stringy dynamics
 – For example, the general argument shows that QCD in 1+1 dimension and quarks in the adjoint has a Hagedorn spectrum.
 • This theory IS center symmetric
 • This theory does NOT have a Hagedorn spectrum due to stringy vibrations of a flux tube in physical space since in 1+1 dimensions the flux tube cannot undergo transverse vibrations.
Conclusion

Center symmetry plays an interesting and subtle role in how confinement is manifest.

Insight into this can be gleaned by studying the behavior of a wide variety of gauge theories with different matter content and by looking at Hagedorn spectra at large N_c.