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Why non-perturbative phenomena?

Why confinement?

Why chiral symmetry breaking?

QED
electric charges
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dipole field

QCD
color charges
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gluon string

QCD-vacuum is non-trivial

What is condensed in the vacuum?



Models of QCD vacuum

Vacuum is a condensate of

instantons
are field configurations of minimal action
competition: action ←→ entropy
⇒ action is not minimal
⇒ (almost) no instantons in QCD vacuum
⇒ in lattice QCD instantons produced by cooling

color magnetic monopoles

center vortices = closed quantised magnetic flux tubes

compare predictions of these models:
Wilson loops and string tensions,
abelian dominance versus center dominance



Color magnetic monopoles
identify by singular gauge fields
lattice: non-trivial cubes: div~B 6= 0
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Maximal abelian gauge, abelian projection



Confinement due to Magnetic Monopoles

type II superconductor dual superconductor

magnetic fluxoid quantisation electric fluxoid quantisation



Center Vortices

➜ ’t Hooft 1979, Nielsen, Ambjorn, Olesen, Cornwall, 1979

Mack, 1980; Feynman, 1981

QCD vacuum is a condensate of closed magnetic flux-lines,
they have topology of tubes (3D) or surfaces (4D),

magnetic flux corresponds to the center of the group,
Vortex model may explain ...

Confinement → piercing of Wilson loop ≡ crossing of static
electric flux tube and moving closed magnetic flux
Topological charge: intersection points, writhing points and
color structure

➜ Engelhardt, Reinhardt (2000), Jordan, Höllwieser, M.F.,
Heller (2007), Höllwieser, Engelhardt (2014)

Spontaneous chiral symmetry breaking: also
center-projected configurations show χSB

➜ Forcrand, Elia (1999), Höllwieser, M.F., Greensite, Heller, Olejnik

(2008), Schweigler, Höllwieser, M.F., Heller (2012,2013)



Vortex Vacuum in SU(2)

Random Structure, Percolation Transition

3-dimensional cut through the dual of a 124-lattice.

Maximal center gauge, center projection



Wilson loops

closed loops around rectangular (R × T ), planar contour C

Area law: W (R ,T ) = 〈
∏

x∈C

Uµ(x)〉 → e−σRT

Perimeter law: W (R ,T ) = 〈
∏

x∈C

Uµ(x)〉 → e−α(R+T )

quark-antiquark “test-pair”

heavy quark potential in limit T →∞

Area law: V (R) = −limT→∞
1

T
ln〈W (R ,T )〉 → −σR

Area law → Confinement

σ . . . string tension → creutz ratio χ

χ =
W (R + 1,T + 1)W (R ,T )

W (R + 1,T )W (R ,T + 1)
→ e−σ ⇒ σ = −lnχ



Abelian Models in SU(2)

monopole plasma in D=3 or 4 Euclidean Dimensions,

fij = ǫijk
1

2

∫

d3r ′
(r − r ′)k
|r − r ′|3

ρ(r ′)

dual superconductivity

dyon ensembles, calorons, far field essentially abelian

Abelian Dominance Approximation:
long range fluctuations are mainly abelian
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Area law for center projected loops in SU(2)
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denote f the probability that a plaquette has the value -1

〈W (A)〉 = [f (−1) + (1− f ) · 1]A = exp[ln(1− 2f )
︸ ︷︷ ︸

−σ

A],=

= exp[−σR × T ], σ ≡ − ln(1− 2f ) ≈ 2f



Double-winding Wilson loops

➜ Greensite, Höllwieser, 2015

check monopole and vortex picture in SU(2)



Double-winding Wilson loops C = C1 + C2

Sum of areas behavior in Abelian models:

W (C ) =
1

2
〈TrPexp[i

∮

C

dxµAa
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2
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= 〈exp[
i

2
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µ] exp[
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2

∮
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dxµA3
µ]〉

≈ 〈exp[
i

2

∮

C1

dxµA3
µ]〉〈exp[

i

2

∮

C2

dxµA3
µ]〉

≈ exp[−σ(A1 + A2)− µP ]

vs. Difference of areas behavior in center vortex picture:

W (C ) = α exp[−σ|A1 − A2|]

Winding around a vortex twice gives no contribution to W (C ):

(−1)2 = +1



Double-winding loops C = C1 = C2
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Double-winding loops C = C1 = C2
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Double-winding loops C = C1 = C2
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Double-winding loops

L1

  L=6

L2

A1 = 6L2, A2 = L1L2



Double-winding loops: Z(2)
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Double-winding Wilson loops: MAG
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Double-winding Wilson loops: SU(2)
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Double-winding Wilson loops

dL=1

  L=7

L1

L2

A1 = 8(L2 + 1)− 1, A2 = L1L2



Double-winding Wilson loops: Z(2)

 0.01

 0.1

 1  2  3  4  5  6  7

W
 (

 C
1 

x 
C

2 
)

L1

L2=1
L2=2
L2=3
L2=4
L2=5
L2=6



Double-winding Wilson loops: MAG
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Double-winding Wilson loops: SU(2)
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W-bosons change the field distribution

Monopoles arranged in monopole–antimonopole chains = Vortices

➜ Ambjorm, Giedt, Greensite, 2000



Monopoles as hint of color structure of vortices

The corresponding P-vortex is a sphere at radius R . The color

structure of the spherical vortex, a hedgehog configuration, is
illustrated in the left plot. The right plot illustrates the monopole

lines after Abelian projection in the maximal Abelian gauge.



Conclusion

monopol plasma, dyon gas, dual superconductor models
predict sum of areas falloff of double-winding Wilson loops

this sum of areas falloff contradicts results of lattice
Monte-Carlo

abelian models do not give the right spatial distribution of
magnetic field

abelian models neglect color structure of magnetic flux

center vortex model predicts difference of areas fall off

Remind from ExQCD14:

center vortices contribute to topological charge via
intersections, writhing points and color structure

all objects with topological charge contribute to near-zero
modes via interaction

all topological objects contribute to ψ̄ψ (Banks-Casher)
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