Unquenching the three-gluon vertex

Adrian Blum, Markus Huber, Reinhard Alkofer University of Graz

Doktoratskolleg Graz "Hadrons in Vacuum, Nuclei and Stars"

Hadron properties from first principles

- hadron properties (masses, decay constants ...) depend on strong interaction between their constituents and can be described by DSE + BSE
- Rainbow-Ladder approximation uses effective interaction (only tree-level structure of quark-gluon vertex)

Beyond Rainbow-Ladder

for example:

Taken from C.S. Fischer and R. Williams, Phys. Rev. Lett. 103, 122001

• three-gluon vertex required. YM sector results in (Blum et al. 2014, Eichmann et al. 2014)

The Dyson-Schwinger approach to correlation functions within a self-consistent calculation (in Landau gauge)

	Yang-Mills Sector	Unquenching	Quark Sector
Propagators	gluon propagator S ghost propagator (1997, 2008)	gluon propagator (2003, 2012)	quark propagator
3 point functions	ghost-gluon vertex (2004, 2013) three-gluon vertex (2014)		quark-gluon vertex (2014)
4 point functions	four-gluon vertex (2014)		

I. The three-gluon vertex DSE in Yang-Mills Theory

- thick blobs: dressed vertices
- thin blobs: bare vertices
- all internal lines are dressed!

truncation

09/03/2015 Excited QCD 2015

neglect all 2-loop diagrams + vertices without tree-level counterpart

- neglect all 2-loop diagrams + vertices without tree-level counterpart
- dressed 4-gluon vertex model

- neglect all 2-loop diagrams + vertices without tree-level counterpart
- dressed 4-gluon vertex model
- dressed ghost-gluon vertex input from solved gh-gl vertex DSE (M.Q. Huber and L. von Smekal JHEP 1304 (2013) 149)

09/03/2015 Excited QCD 2015

- neglect all 2-loop diagrams + vertices without tree-level counterpart
- dressed 4-gluon vertex model
- dressed ghost-gluon vertex input from solved gh-gl vertex DSE (M.Q. Huber and L. von Smekal JHEP 1304 (2013) 149)

09/03/2015 Excited QCD 2015

Dressed propagators and vertices in Landau gauge

dressed propagators:

- ghost propagator: $D^G(p^2) = -\frac{G(p^2)}{p^2}$

- gluon propagator: $D_{\mu\nu}(p^2) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}$

 $G(p^2)$, $Z(p^2)$ = dressing functions

Dressed propagators and vertices in Landau gauge

dressed vertices:

In Landau gauge the full dynamics of the theory are described by the transverse part¹

ghost-gluon vertex: $\Gamma_{\mu}^{A\overline{c}c}(k;p,q) = ig A(k;p,q)p_{\mu} + \text{long. terms}$

three-gluon vertex: 4 transverse + 10 longitudinal tensors

 $\Gamma^{A^3}_{\mu\nu\varrho}(p,q,k) = \sum_{i=1}^4 F_i(p,q,k) \tau^{(i)}_{\mu\nu\rho} + \text{long. terms}$

four-gluon vertex: we employ a model

1: C.S. Fischer, A. Maas and J. M. Pawlowski, Annals Phys. 324 (2009) 2408

Dressed propagators and vertices in Landau gauge

the four-gluon vertex model:

- cancellations between gluon-triangle and swordfish diagrams
- model must take into account the balance between these diagrams

we make the following ansatz:

$$\Gamma_{\mu\nu\varrho\sigma}^{A^4,abcd}(p,q,k,r) = (a \tanh(b/\overline{p}_{A^4}^2) + 1)D^{A^4,UV}(p,q,k,r)\Gamma_{\mu\nu\varrho\sigma}^{(0)A^4,abcd}(p,q,k,r)$$

$$\overline{p}_{A^4}^2 = (p^2 + q^2 + k^2 + r^2)/2$$

parameters a,b can be varied produces a band of solutions

A. Blum, M. Q. Huber, M. Mitter and L. von Smekal, Phys. Rev. D 89, 061703 (2014)

1: A. Cucchieri, A. Maas and T. Mendes, Phys. Rev. D77 (2008) 094510.

A. Blum, M. Q. Huber, M. Mitter and L. von Smekal, Phys. Rev. D 89, 061703 (2014)

A. Blum, M. Q. Huber, M. Mitter and L. von Smekal, Phys. Rev. D 89, 061703 (2014)

Results are in very good agreement with lattice data Hints at dominance of tree-level dressing

G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89, 105014 (2014): All Tensors

G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89, 105014 (2014): All Tensors

G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89, 105014 (2014): All Tensors

09/03/2015 Excited QCD 2015

G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89, 105014 (2014): All Tensors

G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89, 105014 (2014) : All Tensors

Features of the three-gluon vertex

three-gluon vertex features a zero crossing

• dominant contribution stems from dressing function F_1 F_1 corresponds to tree-level tensor structure

• calculation of F_1 in good agreement with lattice data

truncation scheme reliable

II. The quark-gluon vertex

based on the work by Andreas Windisch and Markus Hopfer

The quark-gluon vertex DSE

based on the work by Andreas Windisch and Markus Hopfer

The contribution of two-quark-two-gluon scattering kernel is sizeable

The quark-gluon vertex DSE

 the quark-gluon vertex can be decomposed into 12 basis tensors

$$\bar{\Gamma}_{\mu}^{qgv}(p,q;p-q) = \sum_{i=1}^{12} g_i(p,q;p-q) \lambda_{\mu}^{(i)}$$

- Naive Basis:
 - simple
 - all 12 tensors have to be calculated

$$\begin{pmatrix} 1 \\ p \\ q \\ pq \end{pmatrix} \otimes \begin{pmatrix} \gamma_{\nu} \\ p_{\nu} \\ q_{\nu} \end{pmatrix}$$

- Ball-Chiu Basis:
 - free of kinematic singularities
 - too complex

Instead:

- use relative momentum $\Delta=p-q$ and total momentum $\Sigma=\frac{1}{2}$ (p+q)
- in Landau gauge only transversely projected vertex relevant

$$\Gamma_{\mu}^{qgv}(q,p;\Delta) = P_{\mu\nu}(\Delta) \ \overline{\Gamma}_{\nu}^{qgv}(q,p;\Delta)$$

Transversely Projected Basis:

$$G = P_{\mu\nu}(\Delta) \begin{pmatrix} 1 \\ Z \\ Z \end{pmatrix} \otimes \begin{pmatrix} \gamma_{\nu} \\ \Sigma_{\nu} \\ \Delta_{\nu} \end{pmatrix}$$

Finding a basis for the quark-gluon vertex

Instead:

- use relative momentum $\Delta=p-q$ and total momentum $\Sigma=\frac{1}{2}$ (p+q)
- in Landau gauge only transversely projected vertex relevant

$$\Gamma_{\mu}^{qgv}(q,p;\Delta) = P_{\mu\nu}(\Delta) \ \overline{\Gamma}_{\nu}^{qgv}(q,p;\Delta)$$

Transversely Projected Basis:

$$\mathcal{G} = \{ \boldsymbol{\gamma}_{\mu}^{T} \text{ , i } \widehat{\boldsymbol{\Sigma}}_{\mu}^{T} \text{ , i } \widehat{\boldsymbol{\mathcal{Z}}} \boldsymbol{\gamma}_{\mu}^{T} \text{ , } \widehat{\boldsymbol{\mathcal{Z}}} \widehat{\boldsymbol{\Sigma}}_{\mu}^{T} \text{ , i } \widehat{\boldsymbol{\mathcal{Z}}}^{T} \boldsymbol{\gamma}_{\mu}^{T} \text{ , } \widehat{\boldsymbol{\mathcal{Z}}}^{T} \widehat{\boldsymbol{\Sigma}}_{\mu}^{T} \text{ , } \widehat{\boldsymbol{\mathcal{Z}}}^{T} \widehat{\boldsymbol{\mathcal{Z}}} \boldsymbol{\mathcal{Z}}^{T} \widehat{\boldsymbol{\mathcal{Z}}} \boldsymbol{\mathcal{Z}}^{T} \widehat{\boldsymbol{\mathcal{Z}}}^{T} \widehat{$$

Finding a basis for the quark-gluon vertex

• second projection with $P_{\mu\nu}(\widehat{\Sigma}^T)$ onto γ_{ν}^T allows for construction of **orthonormal basis** ${\cal F}$

- Externally: use **orthonormal basis** ${\mathcal F}$
- Internally: use **transversal basis** ${\cal G}$
- convert from one basis set to the other in each iteration step

The quark propagator DSE

dressed quark propagator:

$$S(p) = \frac{1}{-i p A(p^2) + B(p^2)} = Z_f(p^2) \frac{i p + M(p^2)}{p^2 + M^2(p^2)}$$

quark wave function renormalization: $Z_f(p^2) = 1/A(p^2)$

quark mass function: $M(p^2) = B(p^2)/A(p^2)$

Solve coupled system of quark propagator + quark-gluon vertex DSE

Quark-gluon vertex: Results

- all calculations are performed in the chiral limit
- important contribution from chirally broken dressing function g₂
- in contrast to the three-gluon vertex tensor structures beyond tree-level contribute significantly

Taken from M. Hopfer, PhD thesis, Karl-Franzens-Universität 2014

Quark-gluon vertex: Impact on quark propagator

- mass generation starts at p $\approx 1 \, GeV$
- behaviour of vertex dressing functions in IR (below p $\approx 0.1~GeV$) has almost no effect on M(0) (or the chiral condensate)

Importance of different contributions to the quark-gluon vertex

- the importance of different dressing functions can be extracted from their impact on M(0) and the chiral condensate
- only 5 out of 8 dressing functions are necessary for good results (3 dressing functions for a minimal setup)
- the Abelian diagram is supressed by the color factor N_c^2 as well as dynamically
- dynamical supression can be investigated in the adjoint representation

09/03/2015 Excited QCD 2015

Impact of three-gluon vertex on quark-gluon vertex

- for the dressed three-gluon vertex a model was employed
- the zero-crossing of the three-gluon vertex induces a zero crossing in (most of) the quark-gluon vertex dressing functions
- the IR-behaviour of the three-gluon vertex has only small impact on M(0) and chiral condensate, but behaviour in midmomentum + UV crucial
- to achieve self-consistency:

III. Unquenching the three-gluon vertex

The unquenched three-gluon vertex DSE

- employ the same truncation as for the YM three-gluon vertex
- contribution from quark-swordfish diagram may be included in future investigations by modelling the two-quark-two-gluon scattering kernel

The unquenched three-gluon vertex DSE

- employ the same truncation as for the YM three-gluon vertex
- contribution from quark-swordfish diagram may be included in future investigations by modelling the two-quark-two-gluon scattering kernel

Quark-Triangle: Preliminary Results

only tree-level dressing function g₀
 taken into account

 $QT(p^2, p^2, \pi/2)$

 contribution of quark-triangle to three-gluon vertex very small

Impact of quark-gluon vertex on three-gluon vertex

- set dressing function g₀ equal to 1 in order to study its impact
- only the midmomentum is affected
- no qualitative change in infrared regime

09/03/2015 Excited QCD 2015

Summary and Outlook

calculation of three-gluon vertex and quark-gluon vertex is under control

allows for unquenching

- impact of three-gluon vertex on quark-gluon vertex has been seen in previous studies (→ zero-crossing), but with a modelled three-gluon vertex
- impact of quark sector on three-gluon vertex has not been studied yet seems to be very small (so far)

What remains to be done:

- add all dressing functions
- add quark-swordfish diagram to employed truncation
- couple unquenched three-gluon vertex back to quark-gluon vertex DSE

Back up

A. Blum, M. Q. Huber, M. Mitter and L. von Smekal, Phys. Rev. D 89, 061703 (2014)

RG improvement terms:

• for correct anomalous dimensions: replace Z_1 , Z_4 by RG improvement terms

$$Z_{1} \longrightarrow D^{A^{3},UV}(p,q,k) = G(\bar{p}_{A^{3}}^{2})^{\alpha_{A^{3}}} Z(\bar{p}_{A^{3}}^{2})^{\beta_{A^{3}}} \qquad \bar{p}_{A^{3}}^{2} = (p^{2} + q^{2} + k^{2})/2$$

$$Z_{4} \longrightarrow D^{A^{4},UV}(p,q,k,r) = G(\bar{p}_{A^{4}}^{2})^{\alpha_{A^{4}}} Z(\bar{p}_{A^{4}}^{2})^{\beta_{A^{4}}} \qquad \bar{p}_{A^{4}}^{2} = (p^{2} + q^{2} + k^{2} + r^{2})/2$$

• α, β constructed to give correct anomalous dimension + IR finiteness

decoupling solution:

$$\alpha_{4^3} = 3 + 1/\delta, \ \beta_{4^3} = 0$$

$$\alpha_{A^4} = 4 + 1/\delta$$
, $\beta_{A^4} = 0$

scaling solution:

$$\alpha_{A^3} = -2 - 6\delta$$
, $\beta_{A^3} = -1 - 3\delta$

$$\alpha_{A^4} = -2 - 8\delta$$
, $\beta_{A^4} = -1 - 4\delta$