ttH Modelling

- ATLAS situation for ttH for Run-I presented by E. Shabalina: https://indico.cern.ch/event/280998/
- Using PowHel for ttH modelling (Europhys.Lett.96:11001,2011)
 - NLO Matrix Element Calculation
 - Top decayed by Pythia no top spin information to decay products (though small effect)
- Initial studies of aMC@NLO ttH Modelling for Run-II
 - This would preserve top spin effects in decay products
 - Check of scales (dynamic and static)
 - The goal is to move to ttH(anything) aMC@NLO model for Run-II
- New NLO EW calculation (arXiv:1407.0823 and arXiv:1407.1110)
 - Critical for top-Yukawa coupling measurement
 - Reduction in XS+BR uncertainties which are important for H → γγ in Run-II with more data
- tH samples from MG+Pythia8 4F scheme with heavy b, PDF: CT10
 - 4F Scheme gives better kinematics of spectator b
 - Samples produced at $k_t = +1,0,-1$
 - Yukawa coupling measurement will be goal in Run-II
 - Need a dedicated analysis to focus on this tH measurement

tt+bb Background Modelling

- Background modelling very important in ttH(bb)
 - Need very good model of tt+bb and tt+cc
 - Current attempt in ATLAS: tt+bb modelling using Powheg+Pythia NLO generator 5F scheme
 - Gluon splitting only production mechanism of bb pairs in Powheg
 - tt+b produced via b from 5F PDF
 - However: Very good model of data
- Studies to compare Powheg and Madgraph
 - Found very good agreement in tt+b(b) or tt+c(c) categories, even with missing ME contribution
 of tt+b(b) in Powheg+Pythia
- tt+bb at NLO from Sherpa 2.0
- tt+bb modelling is the leading uncertainty in ttH(bb)
- 50 % normalization uncertainty + re-weigthing uncertainty to match tt differential cross section measurement
 - This measurement will be crucial at the start of Run-II
- Analysis based on Neural Network built on event and object kinematics: we saw with Alpgen, some kinematic variables mis-modelled, for this reason, we need to understand the modelling of the background before we can observe ttH in the bb decay channel.