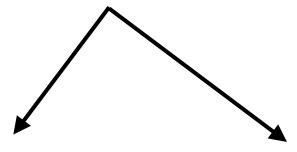
Probing the Higgs-light-quarks couplings & uncharming the Higgs

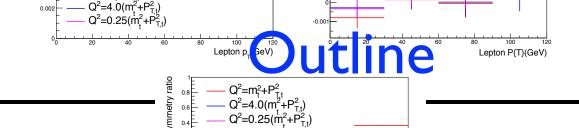
Gilad Perez

Weizmann Inst.


Delaunay, Golling, GP & Soreq (13)
Bodwin, Petriello, Stoynev & Velasco (13)
Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)
GP, Soreq, Stamou & Tobioka (Feb/15)

Aspen Winter 2015
Exploring the Physics Frontier with Circular Colliders

Status: two paths to measuring light-quark Yukawas Recent rapid (th+exp) progress (things are still preliminary,


tons of info missing)

Inclusive (c-tagging)

exclusive (formalism: Neubert's talk)

quarks	\boldsymbol{c}	udsc
th.	Delaunay, Golling, GP & Soreq (13) GP, Soreq, Stamou & Tobioka (Feb/15)	Bodwin, Petriello, Stoynev & Velasco (13); Kagan, GP, Petriello, Soreq, Stoynev & Zupan; Bodwin, Chung, Ee, Lee & Petriello (14); Grossmann, Konig & Neubert (15); GP, Soreq, Stamou & Tobioka (Feb/15)
exp.	ATLAS-CONF-2013-068 ATLAS-CONF-2014-063	ATLAS: 1501.03276

◆ Intro': Higgs & flavor physics within the standard model (SM) & beyond.

Lepton P_(GeV)

• Charming the Higgs, an inclusive approach. (charm-tagging)
Recent developments, establishing Higgs-quark non-univ. & more.

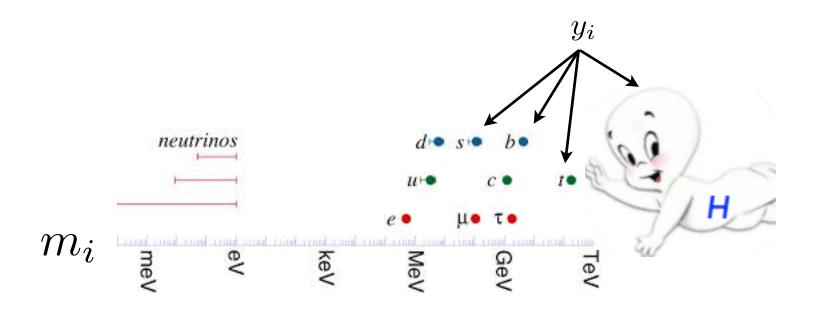
• Brief: exclusive approach, unique window to Higgs-light quarks couplings.

Some projections & summary.

Higgs & flavor physics within the SM

- ♦ Higgs in minimal SM, 2 roles:
- (i) induce electroweak (EW) gauge boson masses & unitarization (high-E consistency);
- (ii) induce fermion masses & unitarization (high-E consistency).
- (i) was already tested in a quantitative way (ii) much less & mostly for 3rd gen'. We focus on (ii), significant progress can be made.

- Recall: in the SM we have 2 type of interactions:
 - (i) gauge interactions: these are flavor blind/universal/same for all quarks;
 - (ii) Yukawa interactions: generation-dependent, non-universal, but to a single scalar.

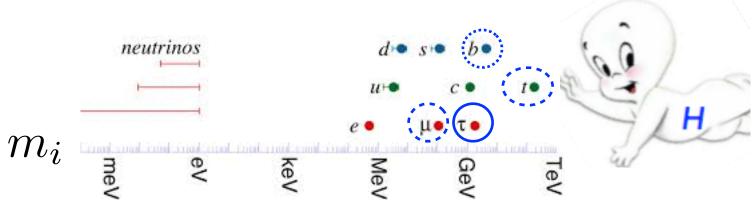

Hige 10.000 | Control of the SM | Control of t

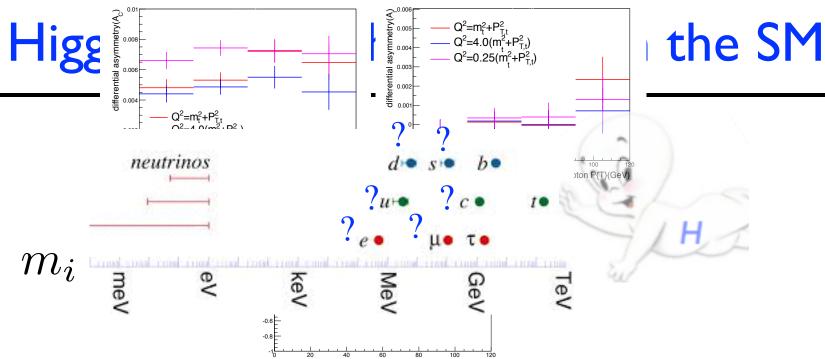
Lepton P{T}(GeV)

The above 2 facts + renormalizability leads to a simple relations, up two small corrections (1loop+ IM suppressed)

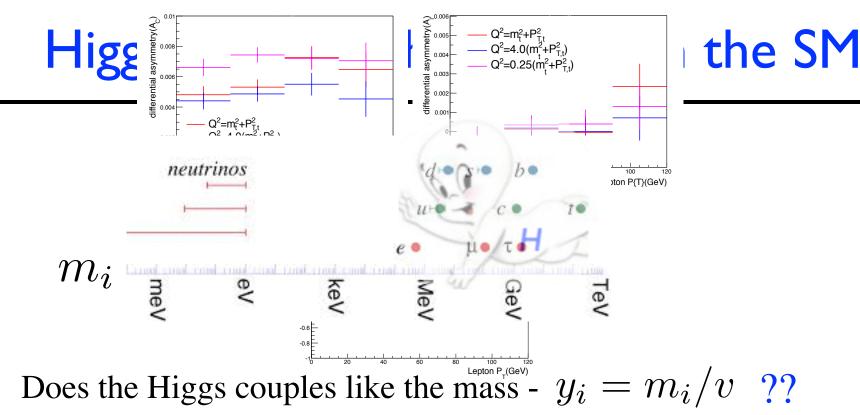
SM: Higgs couples like the mass $= m_i/v$

Lepton p_(GeV)




How much is known experimentally

μ_{x}	ATLAS+CMS	
T	0.97±0.23	
b	0.71±0.31	
t	2.4±0.81	


 μ_{μ} : $\sigma.Br < 7.0 (7.2)(\sigma.Br)_{SM}$

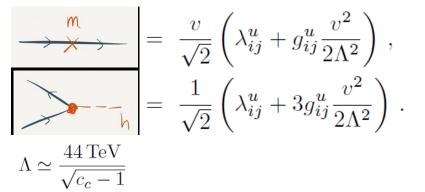
Universal couplings ~260 times SM

Does the Higgs couples like the mass - $y_i = m_i/v$??

• This could dramatically change if non-SM exists, especially because the Higgs is light and its decay (& production) is controlled by small couplings. Let us see a trivial example.

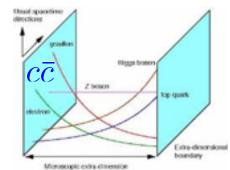
Charming the Higgs

Currently not much known directly on the charm Yukawa:


(i) SM -
$$y_c = m_c/v \sim 0.4 \% \Rightarrow BR(H \rightarrow c\bar{c}) \sim 4\%$$
, very non-trivial to observe...

- However, as $y_b \sim 2\%$ & $BR(H \rightarrow b\bar{b}) \sim 60\%$, Higgs collider pheno' is susceptible to small perturbation.
- Enlarging charm Yukawa by few leads to dramatic changes, for instance:

Delaunay, Golling, GP & Soreg (13)


$$\mathcal{L}_{EFT} \supset \lambda_{ij}^{u} \bar{Q}_{i} \tilde{H} U_{j} + \frac{g_{ij}^{u}}{\Lambda^{2}} \bar{Q}_{i} \tilde{H} U_{j} \left(H^{\dagger} H \right) + \text{h.c.}$$

$$\mathcal{L}_{0} = \frac{h}{v} \left[c_{V} \left(2m_{W}^{2} W_{\mu}^{+} W^{\mu -} + m_{Z}^{2} Z_{\mu} Z^{\mu} \right) - \sum_{q} c_{q} m_{q} \bar{q}_{q} - \sum_{\ell} c_{\ell} m_{\ell} \bar{\ell} \ell \right],$$

Or is it simply technicolor for the light quarks?

If you really care, more models: Delaunay, Grojean & GP (13); Kagan, GP, Volansky & Zupan (09); Dery, Efrati, Hiller, Hochberg & Nir (13); Giudice & Lebedev (08)

Charming the Higgs, current status & few projections

Delaunay, Golling, GP & Soreq (13)

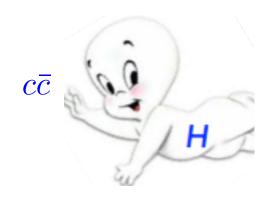
• Ball park bounds are from Higgs "invisible" bound (assumes $c_v=1$):

if all other "visible" couplings set to SM values:

adding a new physics source of ggh: $Br_{inv} \sim 50\%$ @95%CL

BR(
$$H \rightarrow bb$$
) is significantly suppressed:
$$BR_{h \rightarrow b\bar{b}}^{SM} = \frac{BR_{h \rightarrow b\bar{b}}^{SM}}{1 + (|c_c|^2 - 1)BR_{h \rightarrow c\bar{c}}^{SM}} \cdot \approx 40\% (20\%)$$
 with $c_{gg} > 0$

$$\hat{c}_{gg} = c_{gg} + \left[1.3 \times 10^{-2} c_t - (4.0 - 4.3i) \times 10^{-4} c_b - (4.4 - 3.0i) \times 10^{-5} c_c \right],$$


$$\sigma_{c\bar{c}\to h} \simeq 3.0 \times 10^{-3} |c_c|^2 \sigma_{gg\to h}^{\text{SM}},$$

assume instead a speculative $\varepsilon_c = 40\%$ c-tagging efficiency:

$$\rightarrow \mu_{bb+cc} \approx 0.9 (0.6)$$
 @8TeV

Uncharming the Higgs, establishing non-universality & more

GP, Soreq, Stamou & Tobioka (Feb/15)

Before talking about our work, 2 slides about an experimental break through

Charm tagging at the LHC

• In new ATLAS search for stop decay to charm + neutralino ($\tilde{t} \to c + \chi^0$) charm jet tagging has been employed for the first time at LHC

ATLAS-CONF-2013-068

 charm jets identified by combining "information from the impact parameters of displaced tracks and topological properties of secondary and tertiary decay vertices" using multivariate techniques

'medium' operating point: c-tagging efficiency = 20%, rejection factor of 5 for b jets, 140 for light jets. #'s obtained for simulated $t\bar{t}$ events for jets with $30 < p_T < 200$, and calibrated with data

More recently, constraining (non-deg.) scharms

- ◆ An interesting viable possibility is anarchic squark spectrum. Nir & Seiberg (93)
- Scenario still viable and the bounds on scharms are very weak.

Gedalia, Kamenik, Ligeti & GP (12)
Mahbubani, Papucci, GP, Ruderman % Weiler (13)

ss ("flavorful naturalness").

Blanke, Giudice, Paradisi, GP & Zupan (13)

ATLAS: light scharms search \w new working point for charm tagging:

Search for Scalar-Charm Pair-Production with the ATLAS Detector in pp Collisions at $\sqrt{s} = 8 \text{ TeV}$

$$\epsilon_c = 19\% \quad \epsilon_b = 12\%$$

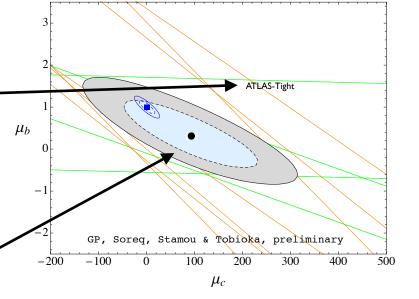
Executive sum.: Constraining Higgs-charm univ.

GP, Soreq, Stamou & Tobioka (Feb/15)

- Bottom line: can use existing data to constrain Higgs-quarks univ..
 - (i) Direct constraint: recast VH(bb), taking advantage of 2 working point $c_c < 250$.
 - (ii) the recent ATLAS search to $h \rightarrow J/\psi \gamma$ (see later) yield $c_c < 210$; (assumes Higgs coupling to two photons and/or four leptons is not significantly modified by new physics);
 - (iii) the direct measurement of the total width yield $c_c < 150$ (ATLAS),120 (CMS).;
 - (iv) Global fit to the Higgs signal strength, $c_c < 6$.
 - (v) $tth \text{ data} => c_t > 0.9 \text{ (equivalence to } C_c > 280).$

#1 Direct constraint: recast VH(bb) (preliminary)

GP, Soreq, Stamou & Tobioka (Feb/15)

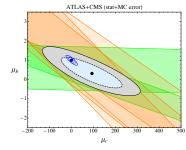

• Idea: use several charm-tagging working points of ATLAS & CMS in their VH(bb) analysis.

$$\mu_b = \frac{\sigma}{\sigma_{SM}} \frac{BR_{b\bar{b}}}{BR_{b\bar{b}}^{SM}} \rightarrow \mu_b + \frac{Br_c^{SM}}{Br_b^{SM}} \frac{\epsilon_{c_1} \epsilon_{c_2}}{\epsilon_{b_1} \epsilon_{b_2}} \mu_c$$

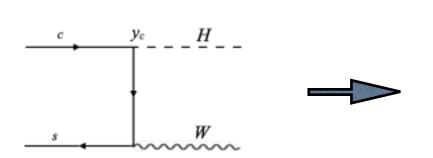
where $\epsilon_{b_{1,2}}$ and $\epsilon_{c_{1,2}}$ are efficiencies to tag jets originating from bottom and charm quark, respectively. μ_c is normalized to be 1 in a case of the SM.

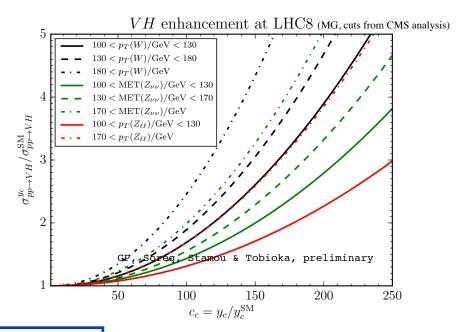
• Each working point yields flat direction:

ATLAS	Med	Tight	CMS	Loose	Med1	Med2	Med3
ϵ_b	70%	50%	ϵ_b	88%	82%	78%	71%
ϵ_c	20%	3.8%	ϵ_c	47%	34%	27%	21%


ATLAS+CMS (stat+MC error)

However, combining points => bound.


New production mechanism VH(bb) (preliminary)


GP, Soreq, Stamou & Tobioka (Feb/15)

•
$$\mu_c = \frac{\sigma}{\sigma^{\rm SM}} \frac{\rm Br}{\rm Br_c^{\rm SM}} = > \text{W SM } VH\text{-production } \mu_c < 30 => \text{ no constraint on } y_c.$$

• However μ_c < 30 for large c_c >50 new production mechanism:

No runaway for c_c

Constraining Higgs-quark universality #1 (model indep')

• ATLAS+CMS
$$tth$$
: $\mu_{tth}^{avg} = 2.41 \pm 0.81 \Rightarrow c_t > 0.9 \sqrt{\frac{\mathrm{Br}_{h \to \mathrm{relevant\ modes}}^{\mathrm{SM}}}{\mathrm{Br}_{h \to \mathrm{relevant\ modes}}}} > 0.9$

$$\frac{c_c}{c_t} = \frac{y_t^{\text{SM}}}{y_c^{\text{SM}}} \frac{y_c}{y_t} = 280 \frac{y_c}{y_t} < 250 \quad \Rightarrow \quad y_c < y_t!$$

GP, Soreq, Stamou & Tobioka (Feb/15)

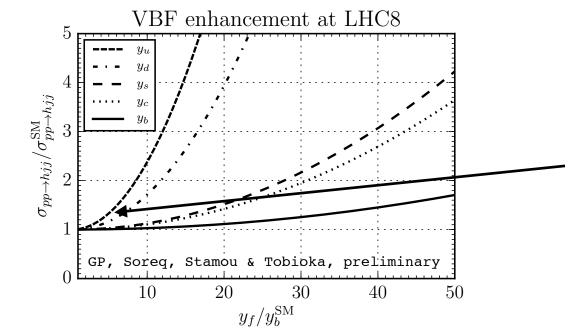
As shown below: the method works much better via real c-tagging working point.

Constraining Higgs-quark universality #2+3

• Width bound: $\Gamma_h < 2.6 \,\mathrm{GeV}$ (ATLAS), $\Gamma_h < 1.7 \,\mathrm{GeV}$ (CMS) => $\mathcal{C}_C < 150, 120$.

GP, Soreq, Stamou & Tobioka (Feb/15)

• Interpretation of ATLAS recent $h \to J/\psi \gamma$ (1501.03276): $\sigma(pp \to h) \times \text{BR}_{h \to J\psi \gamma} < 33 \,\text{fb}$,

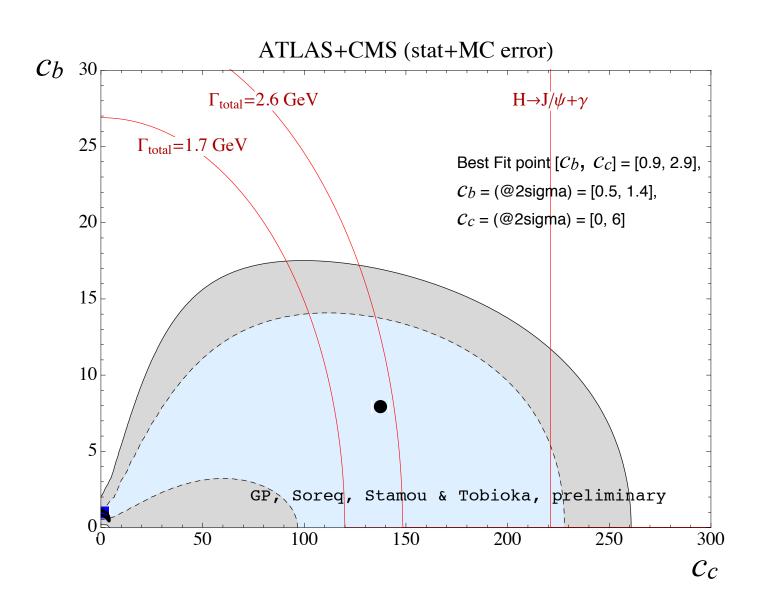

- As discussed below, this implies: $\Gamma_{h \to J/\psi\gamma} = 1.42 \left(\kappa_{\gamma} 0.087\kappa_{c}\right)^{2} \times 10^{-8} \,\mathrm{GeV}$
- Getting rid of production: $\mathcal{R}_{J/\psi,Z} = \frac{\sigma(pp \to h) \times \text{BR}_{h \to J/\psi\gamma}}{\sigma(pp \to h) \times \text{BR}_{h \to ZZ^* \to 4\ell}} = \frac{\Gamma_{h \to J/\psi\gamma}}{\Gamma_{h \to ZZ^* \to 4\ell}} = 2.79 \frac{(\kappa_{\gamma} 0.087\kappa_c)^2}{\kappa_V^2} \times 10^{-2}$,

GP, Soreq, Stamou & Tobioka (Feb/15)

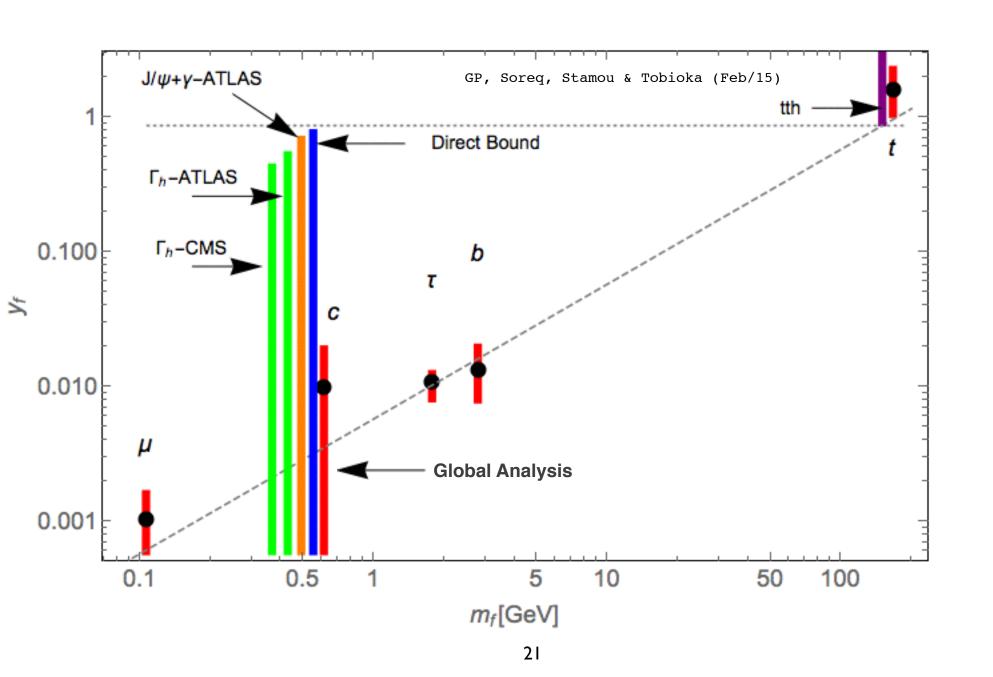
Finally global analysis

- ♦ The conventional way of doing the fit leads to: $C_c < 6$.
- ◆ It is equivalence to the invisible (untagged) Higgs decay bound, driven by VBF:

$$\mu_{\text{VBF}\to h\to WW^*} = 1.27^{+0.44+0.30}_{-0.40-0.21} = 1.27^{+0.53}_{-0.45}, \quad <=>$$


$$\mu_{\text{VBF}\to h\to WW^*} = 1.27^{+0.44+0.30}_{-0.40-0.21} = 1.27^{+0.53}_{-0.45},$$
 <=> $\mu_{\text{VBF}\to h\to WW^*} = \left(\kappa_V^2 + \bar{\sigma}_{\text{VBF}}^{\text{non-SM}}\right) \frac{\kappa_V^2}{R_{\Gamma}}$ where $R_{\Gamma} = \Gamma_h/\Gamma_h^{\text{SM}}$

always set to zero, however not necessarily negligible.


Currently small effect but might not be in the future.

VBF & Vh can be compared to other machines, leptons? hadrons?

Showing all constraints together

Preliminary summary/money plot ...

An Exclusive Window onto Higgs Yukawa Couplings to light quarks

Bodwin, Petriello, Stoynev & Velasco (13) Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)

Exclusive path towards Higgs-light quark couplings

• Use the eff. Lagrangian:
$$\mathcal{L}_{\mathrm{eff}} = -\sum_{q=u,d,s} \bar{\kappa}_q \frac{m_b}{v} h \bar{q}_L q_R - \sum_{q \neq q'} \bar{\kappa}_{qq'} \frac{m_b}{v} h \bar{q}_L q_R' + h.c.$$

$$+ \kappa_Z m_Z^2 \frac{h}{v} Z_\mu Z^\mu + 2\kappa_W m_W^2 \frac{h}{v} W_\mu W^\mu + \kappa_\gamma A_\gamma \frac{\alpha}{\pi} \frac{h}{v} F^{\mu\nu} F_{\mu\nu} \,,$$

Notice that:
$$\bar{\kappa}_q = y_q/y_b^{\mathrm{SM}}$$
, (sorry different notation)

in the SM:

$$\bar{\kappa}_s = m_s/m_b \simeq 0.020$$

$$\bar{\kappa}_d = m_d/m_b \simeq 1.0 \cdot 10^{-3}$$

$$\bar{\kappa}_u = m_u/m_b \simeq 4.7 \cdot 10^{-4}$$

$$\kappa_{\gamma} = \kappa_V = 1$$

Exclusive path towards Higgs-light quark couplings

Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)

Use the eff. Lagrangian:

$$\mathcal{L}_{\text{eff}} = -\sum_{q=u,d,s} \bar{\kappa}_q \frac{m_b}{v} h \bar{q}_L q_R - \sum_{q \neq q'} \bar{\kappa}_{qq'} \frac{m_b}{v} h \bar{q}_L q'_R + h.c.$$
$$+ \kappa_Z m_Z^2 \frac{h}{v} Z_\mu Z^\mu + 2\kappa_W m_W^2 \frac{h}{v} W_\mu W^\mu + \kappa_\gamma A_\gamma \frac{\alpha}{\pi} \frac{h}{v} F^{\mu\nu} F_{\mu\nu} ,$$

Notice that:
$$\bar{\kappa}_q = y_q/y_b^{\rm SM}$$
 ,

where generically:

$$|\bar{\kappa}_u| < 0.98, \quad |\bar{\kappa}_d| < 0.93, \quad |\bar{\kappa}_s| < 0.70$$

varying only one at the time (95%CL)

$$|\bar{\kappa}_u| < 1.3 \,, \quad |\bar{\kappa}_d| < 1.4 \,, \quad |\bar{\kappa}_s| < 1.4$$

varying all couplings (95%CL)

$$|\bar{\kappa}_{qq'}| < 0.6 (1)$$
 for $q, q' \in u, d, s, c, b$ and $q \neq q'$

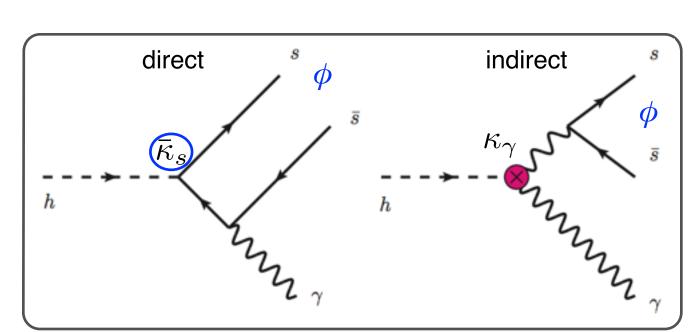
same for the flavor violating case

(FCNC non-robust bound: $|\bar{\kappa}_{bs}| < 8 \cdot 10^{-2}$ | Harnik, Kopp & Zupan; Blankenburg, Ellis, Isidori, (12)

The main idea

$$h \to MV$$
 vector meson
$$\begin{array}{c} \gamma W Z \\ \text{Bodwin, Petriello,} \\ \text{Stoynev, Velasco} \\ 1306.5770 \end{array} \qquad \begin{array}{c} h \to J/\psi \, \gamma & y_c \\ \\ \phi \gamma & y_s \\ h \to \rho \gamma & y_d \, , \, y_u \\ \\ \omega \gamma & \end{array} \qquad \begin{array}{c} \psi_{d} \, , \, y_{d} \, , \, y_{d}$$

Adding off-diagonal: $h \to \bar{B}^{0*}\gamma$, $h \to \bar{B}^{0*}\gamma$, $h \to K^{0*}\gamma$, $h \to D^{0*}\gamma$ Ragan, GP, Petriello, Soreq, Stoynev & Zupan (14)

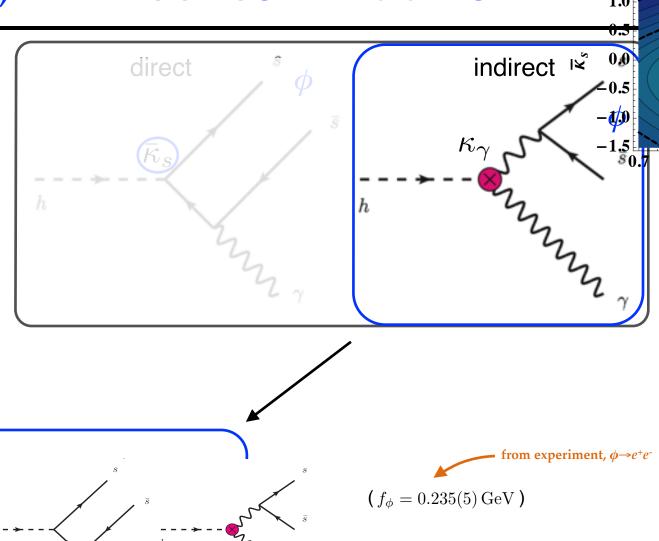

Ex.:
$$h \rightarrow \phi \gamma$$

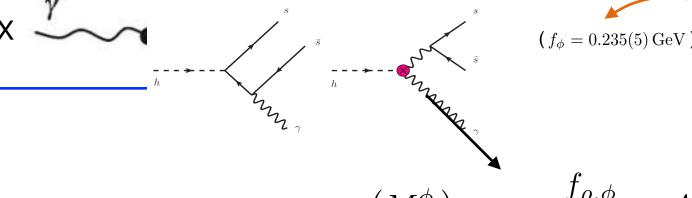
-0.5

$$-1.0$$

$$\Gamma_{h\to\phi\gamma} = \frac{1}{8\pi} \frac{1}{m_h} |M_{ss}^{\phi}|^2,$$

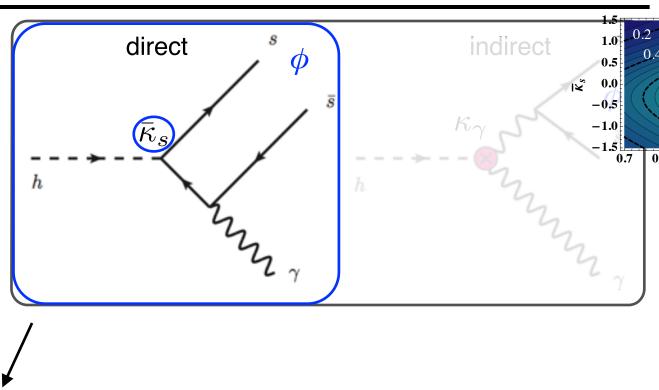
• Two paths to get $h \rightarrow \phi \gamma$:

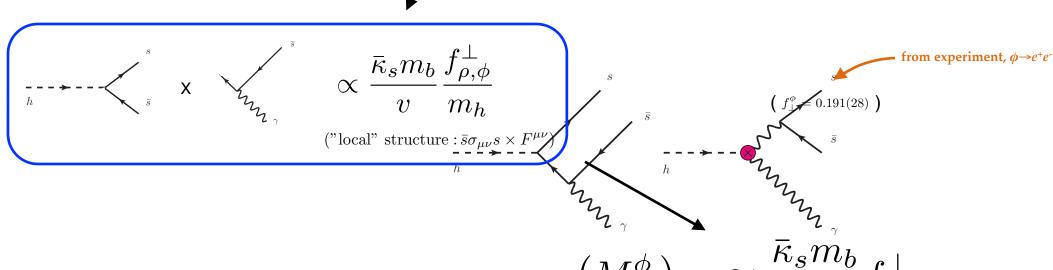



• Let us understand them one by one.

Ex.: $h \rightarrow \phi \gamma$, indirect contribution

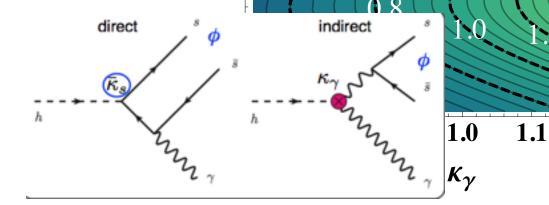
1.0


• Two paths to get $h \rightarrow \phi \gamma$:



Ex.: $h \rightarrow \phi \gamma$, direct contribution

• Two paths to get $h \rightarrow \phi \gamma$:



28

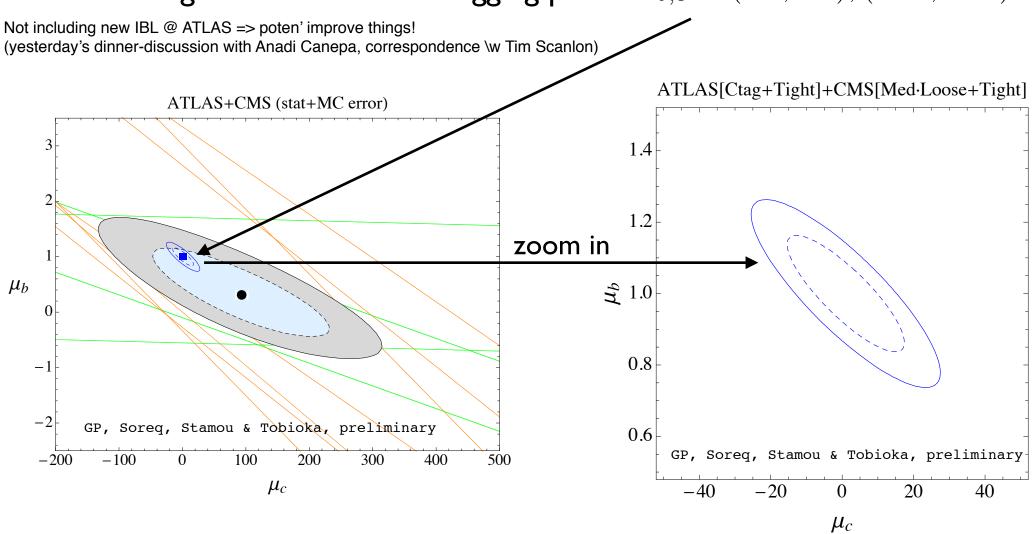
Final result for the BR(h

0.6

$$\Gamma_{h\to\phi\gamma} = \frac{1}{8\pi} \frac{1}{m_h} |M_{ss}^{\phi}|^2,$$

The resulting sensitivity:

$$\frac{\mathrm{BR}_{h\to\phi\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(3.0 \pm 0.13)\kappa_{\gamma} - 0.78\bar{\kappa}_{s} \right] \cdot 10^{-6}}{0.57\bar{\kappa}_{b}^{2}},$$


Similar holds for 1st generation:

$$\frac{\text{BR}_{h\to\rho\gamma}}{\text{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right] \cdot 10^{-5}}{0.57 \bar{\kappa}_{b}^{2}},
\frac{\text{BR}_{h\to\omega\gamma}}{\text{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.6 \pm 0.17) \kappa_{\gamma} - 0.59 \bar{\kappa}_{u} - 0.29 \bar{\kappa}_{d} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}},$$

Few projections

HL projection, inclusive c-tagging (sorry haven't finish the FCC ones)

Combining medium & charm-tagging points: $\epsilon_{b,c} = (0.7, 0.2), (0.12, 0.19)$

Of course O(5%) for y_c for lepton colliders (ex. of complementarity)

Exclusive modes, projections

Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)

- focus on $h \rightarrow \phi \gamma$, use **Pythia 8.1**
 - main decay modes: $\phi \to K^+K^-(49\%)$, $K_L K_S(34\%)$, $\pi^+\pi^-\pi^\circ(15\%)$
 - for $pp \rightarrow h \rightarrow \phi \gamma$ at 14TeV LHC in 70 to 75% cases the kaons/pions and the prompt photon have $|\eta| < 2.4$
 - within the minimal fiducial volume of the ATLAS and CMS experiments
 - adopt the geometrical acceptance factor Ag = 0.75
 - do not include other efficiency or trigger factors

• assume $\kappa_{\gamma} = 1$, negligible background, 3σ reach

no theory error

$\sqrt{s} [\text{TeV}]$	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	# of events (SM)	$\bar{\kappa}_s > (<)$	$\bar{\kappa}_s^{\mathrm{stat.}} > (<)$
14	3000	770	0.56(-1.2)	0.27 (-0.81)
33	3000	1380	0.54(-1.2)	0.22(-0.75)
100	3000	5920	0.54(-1.2)	0.13 (-0.63)

15

J. Zupan An Exclusive Window onto Higgs...

5x SM strange Yukawa

RICE SPEIOTISS

- only a few events expected at e+e-colliders
 - ILC, ILC with luminosity upgrade, CLIC
 - probably too small for observation of $h \rightarrow \phi \gamma$
- ≈ 30 events expected at FCC-ee (TLEP)
 - too small to probe a deviation from the SM prediction
- $h \rightarrow \phi \gamma$ measurements unique to future hadron machines

Conclusions

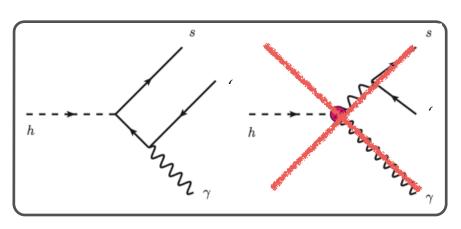
- Is the Higgs-mechanism behind the light quark masses?.
- Order one modifications to Higgs light quark (charm) coupling lead to dramatic change in Higgs pheno'.
- Charm coupling is constrained via charm-tagging, or exclusively.
- The light quarks can be potentially probed via exclusive decays.
- Looked at $h \to M\gamma$, with $h \to \phi\gamma$ most promising.
- Established higgs-quarks non-universality.

Backups

Experimental sensitivity

Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14) • focus on $h \to \phi \gamma$, use $\pi^{+}\pi^{-}\pi^{\circ}(15\%)$ • main where $(\delta BR_{h\to\phi\gamma})^2 = BR_{h\to\phi\gamma}/(\sigma_h \mathcal{L}A_g) + (\delta BR_{h\to\phi\gamma}^{th})^2$ AS and CMS adopt the geome Ag = 0.75 do not include other efficiency or trigg factors two detectors no theory error • assume $\kappa_{\nu} = 1$, negligible background, 3σ reach $\bar{\kappa}_s^{\mathrm{stat.}} > (<)$ $\int \mathcal{L} dt \, [\text{fb}^{-1}]$ $\sqrt{s}\,[{
m TeV}]$ $\bar{\kappa}_s > (<)$ # of events (SM) 14 3000 770 0.56(-1.2)0.27 (-0.81)33 3000 1380 0.22(-0.75)0.54(-1.2)one detector 1003000 5920 0.13(-0.63)0.54(-1.2)5x SM strange Yukawa J. Zupan An Exclusive Window onto Higgs... 15

Thoughts about experimental strategy


- for $h \to \phi \gamma$ decay most promising $\phi \to K^+ K^-$
 - near collinearity of the photon and the ϕ -jet in the transverse plane
 - jet sub-structure information
 - two close high- p_T tracks in a narrow cone
 - di-track invariant mass distribution assuming kaons
 - 1.5% (better than 15 MeV) resolution (CMS)
- can probably be used to significantly cut on the background
 - on jet+ γ QCD backgrounds
 - on $h \rightarrow \phi \gamma + n\pi^{\circ}$, $\eta^{(\prime)}(\rightarrow neutr.) \gamma$
- dedicated trigger probably required to enhance the reach

Thoughts about experimental strategy

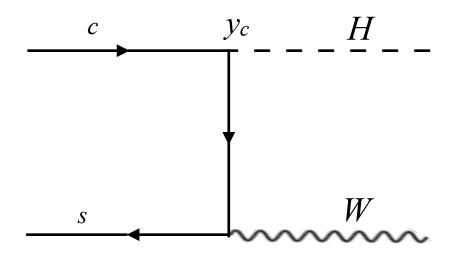
- $h \rightarrow \varrho^{\circ} \gamma$ mode
 - $Br(\varrho \circ \rightarrow \pi^+\pi^-) \sim 100\%$
 - relatively clean mode, similar to $\phi \rightarrow K^+K^-$ decay
- $h \rightarrow \omega \gamma$ mode
 - $Br(\omega \rightarrow \pi^+\pi^-\pi^\circ) \sim 89\%$
 - harder to trigger on
 - hard-to-identify π° smears the observable quantities
 - a detailed experimental study required

Flavor violating couplings

Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)

- FV modes $h \to \bar{B}_s{}^{0*}\gamma$, $h \to \bar{B}^{0*}\gamma$, $h \to \bar{K}^{0*}\gamma$, $h \to D^{0*}\gamma$
 - can probe $\bar{\varkappa}_{bs,sb}$, $\bar{\varkappa}_{bd,db}$, $\bar{\varkappa}_{sd,ds}$ and $\bar{\varkappa}_{cu,uc}$
- $h \to \bar{K}^{0*} \gamma$ similar expr. as $h \to \phi \gamma$
 - but only direct amplitude
- for $\bar{\varkappa}_{ds} \sim O(1) \Rightarrow Br(h \to \bar{K}^{0*}\gamma) \sim O(10^{-8})$
 - not observable at planned future colliders

$$\frac{BR_{h\to \bar{B}_s^{*0}\gamma}}{BR_{h\to b\bar{b}}} = \frac{(2.1\pm 1.0)\cdot 10^{-7}}{0.57\bar{\kappa}_b^2} \frac{|\bar{\kappa}_{bs}|^2 + |\bar{\kappa}_{sb}|^2}{2},$$


The production via $q\bar{q} \to h$ in pp with 8TeV are (the SM is 19 pb)

$$\sigma_{u\bar{u}\to h} = \left(\frac{y_u}{y_b^{\text{SM}}}\right)^2 9.16 \,\text{pb}\,,$$

$$\sigma_{d\bar{d}\to h} = \left(\frac{y_d}{y_b^{\text{SM}}}\right)^2 6.29 \,\text{pb}\,,$$

$$\sigma_{s\bar{s}\to h} = \left(\frac{y_s}{y_b^{\text{SM}}}\right)^2 1.67 \,\text{pb}\,,$$

$$\sigma_{c\bar{c}\to h} = \left(\frac{y_c}{y_b^{\text{SM}}}\right)^2 0.83 \,\text{pb}\,.$$

