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In the future, beyond HL-LHC, "
!
International Linear Collider (ILC)"
!
Future Circular Collider (FCC-ee, formerly known as TLEP)"
!
Circular Electron Positron Collider (CEPC) "
!
They could measure Higgs properties very well as well as"
other electroweak observables. 



ILC: GigaZ, threshold scan at the W pair production 
threshold, top threshold scan"
!
FCC-ee: TeraZ,  threshold scan at the W pair production 
threshold, top threshold scan"
!
CEPC: GigaZ



OUTLINE
Global Fit of Electroweak Observables with 
Oblique Corrections (ILC and FCC-ee)"

Prospects for CEPC Electroweak Precision and 
Higgs measurement"

To Do List for a Successful Electroweak Program"

New Physics Reach and Complementarity



Global Fit of Electroweak Observables with Oblique 
Corrections (ILC and FCC-ee)

Five observables free to vary in the fit: top mass, Z boson mass, "
Higgs mass, strong coupling constant at Z pole, hadronic contribution "
to the running of α; "
!
Three derived observables: W boson mass, effective weak mixing angle,"
Z boson decay width



Our goal in this paper is to assess the physics potential of these di↵erent colliders, including a
first look at CEPC’s potential accuracy in measurements of Higgs boson couplings and in fits of the
oblique parameters S and T [3, 4] (see also [5–7]). These correspond, in an e↵ective operator language
(reviewed in ref. [8, 9]), to adding to the Lagrangian the following dimension-six operators from the
minimal basis of operators [10]:

L
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✓
↵
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where h is the Standard Model Higgs doublet, and we follow the convention hhi ⇡ vp
2

so that v ⇡ 246
GeV. Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms in a supersymmetric theory—
will produce a contribution to S. The masses must additionally be split by custodial symmetry-
violating e↵ects to contribute to T . For example, in the case of the stop and sbottom sector we have
both, and T is numerically dominant [11].

In this paper we estimate the size of the region in the (S, T ) plane that will be allowed after
several suites of high-precision measurements: a “GigaZ” program at the ILC, a “TeraZ” program
at FCC-ee, extended runs of FCC-ee combining Z pole data with data at the W+W� threshold
and the tt threshold, and the Z pole program of CEPC. We present a self-contained discussion of
many of the relative advantages and disadvantages of the di↵erent machines; for example, the Z

mass measurement will be improved only at circular colliders, which can follow LEP in exploiting
resonant spin depolarization. We also emphasize the basic physics of the fits and their potential
bottlenecks, specifying the goals of the electroweak program in future colliders in order to achieve the
best sensitivity. For example, given current data the highest priorities are reducing the uncertainties
on mW for determination of T and of sin2 ✓

e↵

for determination of S, while improved measurements of
the top quark mass or the hadronic contribution to the running of ↵ become important only once other
error bars have been significantly reduced. We hope that a clear discussion of the physics underlying
electroweak fits will help in the planning of future machines, especially for CEPC which is still at a
very early stage. In a companion paper, we will apply the results of this paper to assessing the reach
of future e+e� colliders for natural SUSY scenarios [12].

Current work on future e+e� colliders draws on an extensive older literature; see, for instance,
refs. [13–17]. For the most part, in determining the expected accuracy achieved by future colliders
we will refer to recent review articles, working group reports, and studies for the ILC and TLEP,
to which we refer the reader for a more extensive bibliography of the years of studies that have led
to the current estimates [1, 2, 18–20]. Results in our plots labeled “ILC” or “TLEP” should always
be understood to mean the new physics reach assuming the tabulated measurement precisions we
have extracted from ILC and TLEP literature (displayed in Tables 1 and 2 below). In particular,
we are reserving judgment about the relative measurement precision of the machines or about how
conservative or optimistic various numbers in the published tables might be. Our results have some
overlap with recent work presented by Satoshi Mishima [21] and Henning, Lu, and Murayama [22].

The paper is organized as follows. In Sec. 2, we describe the general procedure of the electroweak
fit and show the sensitivities of current and future experiments such as ILC and TLEP to new physics
that could be encoded in the S and T parameters. In Sec. 3, we present the first estimate of the reach
for new physics of the electroweak program at CEPC and discuss possible improvements for that
program. In Sec. 4, we explain the details of the uncertainties used in our fits. In Sec. 5, we explain
how improving each observable helps with the fit and o↵er guidelines for the most important steps to
take in future electroweak programs. In Sec. 6, we estimate the reach of the Higgs measurements at
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.

CEPC

↵s(M2

Z) ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) ±4.7⇥ 10�5

mZ [GeV] ±(0.0005� 0.001) [41]

mt [GeV] (pole) ±0.6
exp

± 0.25
th

[23]

mh [GeV] < ±0.1

mW [GeV] (±(3� 5)
exp

± 1
th

)⇥ 10�3 [24, 38, 41]

sin2 ✓`
e↵

(±(4.6� 5.1)
exp

± 1.5
th

)⇥ 10�5 [25, 38, 41]

�Z [GeV] (±(5� 10)
exp

± 0.8
th

)⇥ 10�4 [26, 41]

Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.
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Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.
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Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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Potential Improvements for CEPC Electroweak 
Precision

If CEPC could perform energy calibration using the resonant spin depolarization method, which will
be described in Sec. 4.1.4, at the collision time as in the TLEP plan, the systematic uncertainties of
�Z and mZ could potentially be reduced as low as 100 keV.

Now we want to assess how these potential improvements a↵ect the CEPC’s sensitivity and whether
it is worthwhile to implement them. We performed fits with one, two or three of the improvements in
precision discussed above, always relative to the optimistic case from Table 3. The results are shown
in Fig. 3. From the figure, one could see that the improvement of mW precision alone does not help.
Each of the other three improvements could constrain S or T a bit more. Combining improvements in
the �Z and sin2 ✓`

e↵

precisions lead to an increase in the sensitivity to S and T by a factor of 2. Further
combination with a improved measurement of mt leads to a small improvement in the constraint. We
summarize the potential major improvements of sensitivities in the S and T plane in Fig. 4.

CEPC mt [GeV] mW [GeV] sin2 ✓`
e↵

�Z [GeV]

Improved Error ±0.03
exp

± 0.1
th

(±2
exp

± 1
th

)⇥ 10�3 (±2.3
exp

± 1.5
th

)⇥ 10�5 (±1
exp

± 0.8
th

)⇥ 10�4

Table 4. Hypothetical improvements of electroweak observable precisions for CEPC. The improvement of mt

precision could come from the ILC top threshold scan if it happened before or at the same time as CEPC; mW

precision could be improved slightly by a WW threshold scan [41]; sin2 ✓`
e↵

precision could be improved if the

statistical uncertainty is reduced to be smaller than the systematic uncertainty, which is 0.01% [41]. �Z(mZ)

precision could be improved if the systematic uncertainty from the energy calibration could be reduced down

to the TLEP projection.
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Figure 3. 68% C.L. contours of S and T for CEPC with one of the four parameters mt,mW , sin2 ✓W , or �Z

improved (left), two improved (middle), and three of them improved (right) relative to the optimistic case of

Fig. 2. The improved values are listed in Table 4. One could see from the left panel that improving mW only

does not help improve the sensitivity. In the middle and right panels, we don’t show ellipses with improved

mW together with other improved observables because improved mW precision does not help much on top of

the improvements due to the other improved observables. For comparison, we also showed in each plot 68%

C.L. contours of S and T for CEPC with the most optimistic inputs in Table 3.

4 Details of Electroweak Fit

In this section we will explain the details of a number of uncertainties that have gone into the fit in
Sec. 2.
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.
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Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.
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If CEPC could perform energy calibration using the resonant spin depolarization method, which will
be described in Sec. 4.1.4, at the collision time as in the TLEP plan, the systematic uncertainties of
�Z and mZ could potentially be reduced as low as 100 keV.

Now we want to assess how these potential improvements a↵ect the CEPC’s sensitivity and whether
it is worthwhile to implement them. We performed fits with one, two or three of the improvements in
precision discussed above, always relative to the optimistic case from Table 3. The results are shown
in Fig. 3. From the figure, one could see that the improvement of mW precision alone does not help.
Each of the other three improvements could constrain S or T a bit more. Combining improvements in
the �Z and sin2 ✓`

e↵

precisions lead to an increase in the sensitivity to S and T by a factor of 2. Further
combination with a improved measurement of mt leads to a small improvement in the constraint. We
summarize the potential major improvements of sensitivities in the S and T plane in Fig. 4.

CEPC mt [GeV] mW [GeV] sin2 ✓`
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�Z [GeV]

Improved Error ±0.03
exp

± 0.1
th

(±2
exp

± 1
th

)⇥ 10�3 (±2.3
exp

± 1.5
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)⇥ 10�5 (±1
exp

± 0.8
th

)⇥ 10�4

Table 4. Hypothetical improvements of electroweak observable precisions for CEPC. The improvement of mt

precision could come from the ILC top threshold scan if it happened before or at the same time as CEPC; mW

precision could be improved slightly by a WW threshold scan [41]; sin2 ✓`
e↵

precision could be improved if the

statistical uncertainty is reduced to be smaller than the systematic uncertainty, which is 0.01% [41]. �Z(mZ)

precision could be improved if the systematic uncertainty from the energy calibration could be reduced down

to the TLEP projection.
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Figure 3. 68% C.L. contours of S and T for CEPC with one of the four parameters mt,mW , sin2 ✓W , or �Z

improved (left), two improved (middle), and three of them improved (right) relative to the optimistic case of

Fig. 2. The improved values are listed in Table 4. One could see from the left panel that improving mW only

does not help improve the sensitivity. In the middle and right panels, we don’t show ellipses with improved

mW together with other improved observables because improved mW precision does not help much on top of

the improvements due to the other improved observables. For comparison, we also showed in each plot 68%

C.L. contours of S and T for CEPC with the most optimistic inputs in Table 3.

4 Details of Electroweak Fit

In this section we will explain the details of a number of uncertainties that have gone into the fit in
Sec. 2.
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.

CEPC

↵s(M2

Z) ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) ±4.7⇥ 10�5

mZ [GeV] ±(0.0005� 0.001) [41]

mt [GeV] (pole) ±0.6
exp

± 0.25
th

[23]

mh [GeV] < ±0.1

mW [GeV] (±(3� 5)
exp

± 1
th

)⇥ 10�3 [24, 38, 41]

sin2 ✓`
e↵

(±(4.6� 5.1)
exp

± 1.5
th

)⇥ 10�5 [25, 38, 41]

�Z [GeV] (±(5� 10)
exp

± 0.8
th

)⇥ 10�4 [26, 41]

Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .

– 6 –

���� �����	
� (��
���� ���	�)
��� (
��� ������)
���
���� �	
�� (�
��
� ���	�)
���
���� �� (�
��
� ������)
���
���� ��� �	
�� (����� ������)
���
���� ��� �	
��� �� (����� ���	�)

� = �

�� % ����

-0.04 -0.02 0 0.040.02

-0.04

-0.02

0

0.06

0.04

0.02

S

T

If CEPC could perform energy calibration using the resonant spin depolarization method, which will
be described in Sec. 4.1.4, at the collision time as in the TLEP plan, the systematic uncertainties of
�Z and mZ could potentially be reduced as low as 100 keV.

Now we want to assess how these potential improvements a↵ect the CEPC’s sensitivity and whether
it is worthwhile to implement them. We performed fits with one, two or three of the improvements in
precision discussed above, always relative to the optimistic case from Table 3. The results are shown
in Fig. 3. From the figure, one could see that the improvement of mW precision alone does not help.
Each of the other three improvements could constrain S or T a bit more. Combining improvements in
the �Z and sin2 ✓`

e↵

precisions lead to an increase in the sensitivity to S and T by a factor of 2. Further
combination with a improved measurement of mt leads to a small improvement in the constraint. We
summarize the potential major improvements of sensitivities in the S and T plane in Fig. 4.

CEPC mt [GeV] mW [GeV] sin2 ✓`
e↵

�Z [GeV]

Improved Error ±0.03
exp

± 0.1
th

(±2
exp

± 1
th

)⇥ 10�3 (±2.3
exp

± 1.5
th

)⇥ 10�5 (±1
exp

± 0.8
th

)⇥ 10�4

Table 4. Hypothetical improvements of electroweak observable precisions for CEPC. The improvement of mt

precision could come from the ILC top threshold scan if it happened before or at the same time as CEPC; mW

precision could be improved slightly by a WW threshold scan [41]; sin2 ✓`
e↵

precision could be improved if the

statistical uncertainty is reduced to be smaller than the systematic uncertainty, which is 0.01% [41]. �Z(mZ)

precision could be improved if the systematic uncertainty from the energy calibration could be reduced down

to the TLEP projection.
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Figure 3. 68% C.L. contours of S and T for CEPC with one of the four parameters mt,mW , sin2 ✓W , or �Z

improved (left), two improved (middle), and three of them improved (right) relative to the optimistic case of

Fig. 2. The improved values are listed in Table 4. One could see from the left panel that improving mW only

does not help improve the sensitivity. In the middle and right panels, we don’t show ellipses with improved

mW together with other improved observables because improved mW precision does not help much on top of

the improvements due to the other improved observables. For comparison, we also showed in each plot 68%

C.L. contours of S and T for CEPC with the most optimistic inputs in Table 3.

4 Details of Electroweak Fit

In this section we will explain the details of a number of uncertainties that have gone into the fit in
Sec. 2.
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Potential Improvement for CEPC Electroweak Precision

If CEPC could perform energy calibration using the resonant spin depolarization method, which will
be described in Sec. 4.1.4, at the collision time as in the TLEP plan, the systematic uncertainties of
�Z and mZ could potentially be reduced as low as 100 keV.

Now we want to assess how these potential improvements a↵ect the CEPC’s sensitivity and whether
it is worthwhile to implement them. We performed fits with one, two or three of the improvements in
precision discussed above, always relative to the optimistic case from Table 3. The results are shown
in Fig. 3. From the figure, one could see that the improvement of mW precision alone does not help.
Each of the other three improvements could constrain S or T a bit more. Combining improvements in
the �Z and sin2 ✓`

e↵

precisions lead to an increase in the sensitivity to S and T by a factor of 2. Further
combination with a improved measurement of mt leads to a small improvement in the constraint. We
summarize the potential major improvements of sensitivities in the S and T plane in Fig. 4.

CEPC mt [GeV] mW [GeV] sin2 ✓`
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�Z [GeV]

Improved Error ±0.03
exp

± 0.1
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(±2
exp

± 1
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)⇥ 10�3 (±2.3
exp

± 1.5
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)⇥ 10�5 (±1
exp

± 0.8
th

)⇥ 10�4

Table 4. Hypothetical improvements of electroweak observable precisions for CEPC. The improvement of mt

precision could come from the ILC top threshold scan if it happened before or at the same time as CEPC; mW

precision could be improved slightly by a WW threshold scan [41]; sin2 ✓`
e↵

precision could be improved if the

statistical uncertainty is reduced to be smaller than the systematic uncertainty, which is 0.01% [41]. �Z(mZ)

precision could be improved if the systematic uncertainty from the energy calibration could be reduced down

to the TLEP projection.
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Figure 3. 68% C.L. contours of S and T for CEPC with one of the four parameters mt,mW , sin2 ✓W , or �Z

improved (left), two improved (middle), and three of them improved (right) relative to the optimistic case of

Fig. 2. The improved values are listed in Table 4. One could see from the left panel that improving mW only

does not help improve the sensitivity. In the middle and right panels, we don’t show ellipses with improved

mW together with other improved observables because improved mW precision does not help much on top of

the improvements due to the other improved observables. For comparison, we also showed in each plot 68%

C.L. contours of S and T for CEPC with the most optimistic inputs in Table 3.

4 Details of Electroweak Fit

In this section we will explain the details of a number of uncertainties that have gone into the fit in
Sec. 2.
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WW threshold scan

ILC top threshold scan luminosity of off-Z peak running"
increased by a factor of 10 to 40 fb-1"
at each energy point

better energy calibration using"
resonant spin depolarization

 WW threshold scan is not necessary;"
 Combining possible improvements in weak mixing angle, Z width and/or 
top threshold scan leads to an improvement of a factor of 2-3, making 
CEPC EWPT comparable to FCC-ee EWPT "



p
s and L CEPC: 5 ab�1, 240 GeV

Zh ⌫⌫h

��/� 0.70% -

mode �(� · Br)/(� · Br)
h ! bb 0.32% 4.0%

h ! cc 2.2 % -

h ! gg 1.9% -

h ! WW ⇤ 1.7% -

h ! ⌧+⌧� 1.1% -

h ! ZZ⇤ 4.8% -

h ! �� 9.1% -

h ! µ+µ� 27% -

Coupling CEPC (5 ab�1) CEPC + HL-LHC

�� 4.8% 1.7%

gg 1.9% 1.8%

WW 1.6% 1.6%

ZZ 0.20% 0.20%

tt 1.9% 1.9%

bb 1.5% 1.5%

⌧+⌧� 1.7% 1.6%

Table 6. Estimated uncertainties in Higgs measurements at CEPC. At left: uncertainties in cross section and

cross section times branching ratio measurements, analogous to Table 5.4 in the ILC Higgs White Paper [18]. At

right: uncertainties on individual Higgs couplings from a profile likelihood in a seven parameter fit, analogous

to Table 6.4 of ref. [18]. The third column includes a 3.6% constraint on the ratio Br(h ! ��)/Br(h ! ZZ⇤)

from the high-luminosity LHC run [83].

not to do for consistency with the results of ref. [18].) In making these estimates, we have ignored
theory uncertainties, which were taken to be 0.1% in ref. [18]. This is su�ciently small as to make
little di↵erence in the fit. A detailed discussion of how lattice QCD can reduce the relevant theory
uncertainties may be found in ref. [35], which concludes that theory uncertainties can be made small
enough that experimental uncertainties dominate for Higgs coupling determination. In the final column
of Table 6 at right, we also show the combination with the LHC’s constraint on the ratio of Higgs
decay widths to photons and Z bosons. This is expected to be measured to a precision of 3.6% with
small theoretical uncertainty [83]. Combining with this information significantly improves CEPC’s
constraint on the Higgs coupling to photons, but has little e↵ect on the precision with which other
couplings can be extracted.

7 New Physics Reach and Complementarity

Precision Z and W boson measurements and precision Higgs boson measurements both o↵er the possi-
bility to probe new physics at energy scales out of direct reach. They are sensitive to di↵erent operators.
For instance, the T parameter operator

��h†Dµh
��2 is highly constrained by measurements of the W

mass and sin2 ✓`
e↵

, while Higgs coupling measurements are sensitive to operators like @µ(h†h)@µ(h†h)
and h†hBµ⌫B

µ⌫ . Di↵erent models of new physics make di↵erent predictions for the size of these op-
erators, and so in the event that new physics is within reach it could be important to have the full
suite of precision electroweak and Higgs measurements as a “fingerprint” for the new physics.

On the other hand, in many models the predictions for di↵erent observables are correlated, so
we can make model-independent comparisons of the reach for S and T parameter fits versus Higgs
coupling measurements. In a companion paper, we will take a detailed look at how these measurements
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Prospects for CEPC Higgs measurements
HL-LHC could constrain the ratio "
of Higgs decay widths to photon and Z’s

Fan, Reece and Wang 1411.1054
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Figure 5. First row: allowed T (left) and S (right) at 2� C.L. as a function of error bar of one observable

(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed

at current values. Second row: contours of allowed T at 2 � C.L. in the (�mt, �mZ) plane for �mW = 5 MeV

(left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values. Last

row: left plot: contours of allowed S at 2� C.L. in the (�mt, �mZ) plane for � sin
2 ✓`

e↵

= 10�5 (left) ; right plot:

allowed T at 2� C.L. as a function of the error bar of �↵
(5)

had

normalized to its current value fixing �mW = 1

MeV, �mt = 20 MeV and �mZ = 0.1 MeV.
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To do list for a successful electroweak program "
!
What are the most important observables whose precisions need to be 
improved to achieve the best sensitivity of EWPT?"
What levels of precision are desirable for these observables? "
!
Decompose the fits into steps: for example, first vary one parameter "
at a time "



 Determine mW to better than 5 MeV precision (15 MeV now) and 
sin2θ to better than 2⨉10-5 precision (16⨉10-5  now);"

!
 Determine mt to 100 MeV precision (0.76 GeV now) and mZ to 500 
KeV precision (2.1 MeV now)."

!
 The precision goals apply to both experimental and theory 
uncertainties. For theory uncertainties, this means for mW, sin2θ, 
complete three-loop SM electroweak corrections computations are 
desirable (two-loop calculations so far).



New Physics Reach:  
use natural SUSY as an example  
(stop + Higgsino sector)

Lepton colliders are limited in kinematic reach of stops "
compared to proton colliders;"
!
On the other hand, stops can also be hidden due to some"
non-minimal decay modes and/or kinematics of the decay  
products."
!
Precision measurements at lepton colliders could provide 
complementary probes independent of the details of stop 
decays.  "
!



New Physics Reach:  
use natural SUSY as an example  
(stop + Higgsino sector)
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Figure 1. Loop diagrams contributing to the T parameter operator
�
h†Dµh

�2
when the left-handed

stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

† are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e↵ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe�cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di↵erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].

W B

h h†

Q̃
3

y2t
+ W B

h

h†

Q̃
3

t̃R

Q̃
3

t̃R

Xt

Xt

,
B, W

Q̃
3

Q̃
3

t̃R

h†

h

Xt

Xt

Figure 2. Loop diagrams contributing to the S parameter. The two diagrams at left generate the usual

operator h†W iµ⌫�ihBµ⌫ when the left-handed stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

†

are integrated out. The diagram at right generates the operators i@⌫Bµ⌫h
†

$
Dµh and iD⌫W i

µ⌫h
†�i

$
Dµh, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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allowed. In particular, for non-zero Xt, the region around |m2

˜t1
�m2

˜t2
| ⇠ 0 may not be obtainable from

the diagonalization of a Hermitian stop mass matrix [32].
The sbottom sector has a similar mass matrix with mt replaced by mb, m ˜d3

replacing mũ3 , and
the appropriately modified D-terms. Generally we can neglect mixing in the sbottom sector because
mb ⌧ mt. The mass of the left-handed sbottom m2

˜b1
could be written in terms of the stop physical

masses and mixing angle as

m2

˜b1
= cos2 ✓

˜tm
2

˜t1
+ sin2 ✓

˜tm
2

˜t2
�m2

t �m2

W cos(2�). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac fermion,
with masses approximately equal to µ. The splittings originate from dimension five operators when
the bino and wino are integrated out, and are of order m2

Z/M1,2. We will ignore these splittings and
treat all higgsino masses as equal to µ for the purpose of calculating loop e↵ects.

2.2 Electroweak Precision: Oblique Corrections

The familiar S and T oblique parameters [33, 34] (see also [35–37]) correspond, in an e↵ective operator
language (reviewed in ref. [38, 39]), to adding to the Lagrangian

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 . (2.3)

Here h is the Standard Model Higgs doublet and v ⇡ 246 GeV; in the MSSM context it may be thought
of as the doublet that remains after integrating out the linear combination of Hu and Hd that does not
obtain a VEV. The often-discussed U parameter corresponds to a dimension-8 operator,

�
h†W iµ⌫h

�
2

,
and we can safely neglect it. In equating S and T with coe�cients in L

oblique

, we must first rewrite
the Lagrangian (using equations of motion and integration by parts) in terms of a minimal basis of

operators [40]. Other operators like i@⌫Bµ⌫h
†

$
Dµh will contribute to the S parameter if we leave the

result in terms of an overcomplete basis. We will see some examples below in which a straightforward
diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms—will produce a contribution
to S. The masses must additionally be split by custodial symmetry-violating e↵ects to contribute to
T . In the case of the stop and sbottom sector we have both, and T is numerically dominant [41]. The
diagrams leading to a T -parameter are shown in Fig. 1. There are terms proportional to y4t , to y2tX

2

t ,
and to X4

t . These diagrams are very familiar from the loop corrections to the Higgs quartic coupling
that can lift the MSSM Higgs mass above the Z-mass [42–45]. The only di↵erence for T is that we
extract momentum-dependent terms to obtain the dimension-six operator. The result is:

T ⇡ m4

t

16⇡ sin2 ✓Wm2

Wm2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.4)

The diagrams generating the S-parameter are shown in Fig. 2. Notice that in order for the first

diagram to contribute, it is important that the SU(2)L structure of the coupling is
⇣
h · Q̃

3

⌘⇣
h† · Q̃†

3

⌘

rather than (h†h)(Q̃†
3

Q̃
3

), as the latter would lead to a zero SU(2)L trace around the loop. As a result,
the F -term potential contributes / y2t and the SU(2)L D-term potential contributes / g2, but there
is no U(1)Y D-term contribution / g02. The leading correction is

S ⇡ � 1

6⇡

m2

t

m2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.5)
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Our goal in this paper is to assess the physics potential of these di↵erent colliders, including a
first look at CEPC’s potential accuracy in measurements of Higgs boson couplings and in fits of the
oblique parameters S and T [3, 4] (see also [5–7]). These correspond, in an e↵ective operator language
(reviewed in ref. [8, 9]), to adding to the Lagrangian the following dimension-six operators from the
minimal basis of operators [10]:

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 , (1.1)

where h is the Standard Model Higgs doublet, and we follow the convention hhi ⇡ vp
2

so that v ⇡ 246
GeV. Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms in a supersymmetric theory—
will produce a contribution to S. The masses must additionally be split by custodial symmetry-
violating e↵ects to contribute to T . For example, in the case of the stop and sbottom sector we have
both, and T is numerically dominant [11].

In this paper we estimate the size of the region in the (S, T ) plane that will be allowed after
several suites of high-precision measurements: a “GigaZ” program at the ILC, a “TeraZ” program
at FCC-ee, extended runs of FCC-ee combining Z pole data with data at the W+W� threshold
and the tt threshold, and the Z pole program of CEPC. We present a self-contained discussion of
many of the relative advantages and disadvantages of the di↵erent machines; for example, the Z

mass measurement will be improved only at circular colliders, which can follow LEP in exploiting
resonant spin depolarization. We also emphasize the basic physics of the fits and their potential
bottlenecks, specifying the goals of the electroweak program in future colliders in order to achieve the
best sensitivity. For example, given current data the highest priorities are reducing the uncertainties
on mW for determination of T and of sin2 ✓

e↵

for determination of S, while improved measurements of
the top quark mass or the hadronic contribution to the running of ↵ become important only once other
error bars have been significantly reduced. We hope that a clear discussion of the physics underlying
electroweak fits will help in the planning of future machines, especially for CEPC which is still at a
very early stage. In a companion paper, we will apply the results of this paper to assessing the reach
of future e+e� colliders for natural SUSY scenarios.

Current work on future e+e� colliders draws on an extensive older literature; see, for instance,
refs. [12–16]. For the most part, in determining the expected accuracy achieved by future colliders
we will refer to recent review articles, working group reports, and studies for the ILC and TLEP,
to which we refer the reader for a more extensive bibliography of the years of studies that have led
to the current estimates [1, 2, 17–19]. Results in our plots labeled “ILC” or “TLEP” should always
be understood to mean the new physics reach assuming the tabulated measurement precisions we
have extracted from ILC and TLEP literature (displayed in Tables 1 and 2 below). In particular,
we are reserving judgment about the relative measurement precision of the machines or about how
conservative or optimistic various numbers in the published tables might be. Our results have some
overlap with recent work presented by Satoshi Mishima [20] and Henning, Lu, and Murayama [21].

The paper is organized as follows. In Sec. 2, we describe the general procedure of the electroweak
fit and show the sensitivities of current and future experiments such as ILC and TLEP to new physics
that could be encoded in the S and T parameters. In Sec. 3, we present the first estimate of the reach
for new physics of the electroweak program at CEPC and discuss possible improvements for that
program. In Sec. 4, we explain the details of the uncertainties used in our fits. In Sec. 5, we explain
how improving each observable helps with the fit and o↵er guidelines for the most important steps to
take in future electroweak programs. In Sec. 6, we estimate the reach of the Higgs measurements at
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Figure 1. Loop diagrams contributing to the T parameter operator
�
h†Dµh

�2
when the left-handed

stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

† are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e↵ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe�cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di↵erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].
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Figure 2. Loop diagrams contributing to the S parameter. The two diagrams at left generate the usual

operator h†W iµ⌫�ihBµ⌫ when the left-handed stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

†

are integrated out. The diagram at right generates the operators i@⌫Bµ⌫h
†

$
Dµh and iD⌫W i

µ⌫h
†�i

$
Dµh, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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allowed. In particular, for non-zero Xt, the region around |m2

˜t1
�m2

˜t2
| ⇠ 0 may not be obtainable from

the diagonalization of a Hermitian stop mass matrix [32].
The sbottom sector has a similar mass matrix with mt replaced by mb, m ˜d3

replacing mũ3 , and
the appropriately modified D-terms. Generally we can neglect mixing in the sbottom sector because
mb ⌧ mt. The mass of the left-handed sbottom m2

˜b1
could be written in terms of the stop physical

masses and mixing angle as

m2

˜b1
= cos2 ✓

˜tm
2

˜t1
+ sin2 ✓

˜tm
2

˜t2
�m2

t �m2

W cos(2�). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac fermion,
with masses approximately equal to µ. The splittings originate from dimension five operators when
the bino and wino are integrated out, and are of order m2

Z/M1,2. We will ignore these splittings and
treat all higgsino masses as equal to µ for the purpose of calculating loop e↵ects.

2.2 Electroweak Precision: Oblique Corrections

The familiar S and T oblique parameters [33, 34] (see also [35–37]) correspond, in an e↵ective operator
language (reviewed in ref. [38, 39]), to adding to the Lagrangian

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 . (2.3)

Here h is the Standard Model Higgs doublet and v ⇡ 246 GeV; in the MSSM context it may be thought
of as the doublet that remains after integrating out the linear combination of Hu and Hd that does not
obtain a VEV. The often-discussed U parameter corresponds to a dimension-8 operator,

�
h†W iµ⌫h

�
2

,
and we can safely neglect it. In equating S and T with coe�cients in L

oblique

, we must first rewrite
the Lagrangian (using equations of motion and integration by parts) in terms of a minimal basis of

operators [40]. Other operators like i@⌫Bµ⌫h
†

$
Dµh will contribute to the S parameter if we leave the

result in terms of an overcomplete basis. We will see some examples below in which a straightforward
diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms—will produce a contribution
to S. The masses must additionally be split by custodial symmetry-violating e↵ects to contribute to
T . In the case of the stop and sbottom sector we have both, and T is numerically dominant [41]. The
diagrams leading to a T -parameter are shown in Fig. 1. There are terms proportional to y4t , to y2tX

2

t ,
and to X4

t . These diagrams are very familiar from the loop corrections to the Higgs quartic coupling
that can lift the MSSM Higgs mass above the Z-mass [42–45]. The only di↵erence for T is that we
extract momentum-dependent terms to obtain the dimension-six operator. The result is:

T ⇡ m4

t

16⇡ sin2 ✓Wm2

Wm2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.4)

The diagrams generating the S-parameter are shown in Fig. 2. Notice that in order for the first

diagram to contribute, it is important that the SU(2)L structure of the coupling is
⇣
h · Q̃

3

⌘⇣
h† · Q̃†

3

⌘

rather than (h†h)(Q̃†
3

Q̃
3

), as the latter would lead to a zero SU(2)L trace around the loop. As a result,
the F -term potential contributes / y2t and the SU(2)L D-term potential contributes / g2, but there
is no U(1)Y D-term contribution / g02. The leading correction is

S ⇡ � 1

6⇡

m2

t

m2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.5)
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2.3 Production of b and t Quarks

Integrating out loops of stops and higgsinos can correct the production of bottom and top quarks at
e+e� colliders. In particular, in the minimal basis of dimension-six operators these corrections show
up in the terms [40]

chq;1ih
† $
DµhQ

†
3

�µQ
3

+ chq;3ih
†�i

$
DµhQ

†
3

�i�µQ
3

+ chuih
† $
Dµhu

c†
3

�µuc
3

+ chdih
† $
Dµhd

c†
3

�µdc
3

+ h.c. (2.6)

Again, however, calculating loop diagrams might generate other operators not present in Eq. 2.6, in
which case we should use the equations of motion and integration by parts to rewrite the operators in
a minimal basis.

The largest e↵ects are associated with the top quark Yukawa coupling ytu
c
3

Hu · Q
3

. As a result,
we should look for corrections associated with the production of left-handed b quarks, and either left-
or right-handed top quarks. Let us begin by discussing the b-quark coupling, which is constrained for
instance by measurements of

Rb ⌘ �(Z ! bb)

�(Z ! hadrons)
. (2.7)

A diagram generating a correction to the Z ! bb process is shown in Fig. 3. This cannot arise from
an operator in eq. 2.6, because there is nowhere in the diagram that we could place insertions of h
and h†. A more complete list of operators [50] includes the additional terms

W i
µ⌫Q

†
3

�i�µiD⌫Q
3

, Bµ⌫Q
†
3

�µiD⌫Q
3

, (2.8)

which also couple the left-handed bottom quark to the Z boson. These operators, missing in the
minimal basis, are the ones that are generated by integrating out higgsinos and right-handed stops.
(Note the similarity in form of both the diagram and the corresponding operator to the right-hand
diagram of fig. 2.) The full dependence of Rb on dimension-six operators is worked out in ref. [51].

Z

bL

bL

t̃R

H̃�
u

H̃+

u

Figure 3. Loop diagram correcting Rb. The operators that are generated are W i
µ⌫Q

†
3�

i�µiD⌫Q3 and

Bµ⌫Q
†
3�

µiD⌫Q3.

In fact, we can understand the expected size of the resulting e↵ect in somewhat more detail by
integrating out first the right-handed stops and subsequently the higgsinos. After the first step we
have a four-fermion operator:

H̃u bL

t̃R

H̃u bL

) y2t
mt̃2

R

⇣
˜Hu ·Q3

⌘⇣
Q†

3

· ˜H†
u

⌘
.

(2.9)
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This operator then mixes with the Zbb coupling as we integrate out the higgsinos:

Z

H̃u
bL

bL

) y2t
mt̃2

R

W i
µ⌫Q

†
3

�i�µiD⌫Q
3

log

mt̃R
µ .

(2.10)

The structure of derivatives in this operator produces a factor of m2

Z in the formula for Rb, eq. A.6.
The reason for integrating the particles out in two steps is to highlight that there is a potentially large
logarithm of the ratio of stop and higgsino masses. In a careful e↵ective field theory treatment, this
log could be resummed by computing the renormalization group evolution that mixes the four-fermion
operator with the operator modifying the Z coupling through their matrix of anomalous dimensions.

Once we include mixing of the left- and right-handed stops, there are additional terms that directly
generate the operators in eq. 2.6. We can start by integrating out the left-handed stops to generate a
correction to the coupling of right-handed stops to the Z boson:

Z

h

h

t̃L

t̃L

t̃R

t̃R

) y2tX
2

t

⇣
h†i
 !
D µh

⌘⇣
t̃†Ri
 !
D µt̃R

⌘

m4

˜tL

.

(2.11)

This new operator then mixes at one loop into the operator coupling Z bosons to the left-handed b

quark:

Z

h

h

H̃u

bL

bL

) y4tX
2

t

⇣
h†i
 !
D µh

⌘
(

Q†
3

�µQ
3

)

m4

˜tL

log

m
˜tL

max(m
˜tR
,µ) .

(2.12)

These structures that we have deduced on e↵ective field theory grounds match terms that can be
found by expanding the full loop formulas in refs. [52, 53].

A future e+e� collider running above the tt threshold can also measure corrections to the top
quark’s couplings to Z bosons and photons to about 1% accuracy [54, 55]. The ZtLtL vertex is
modified by the same operator as Rb, and a correction to the ZtRtR vertex can also arise from
integrating out left-handed stops. We expect that either Rb or the T parameter will provide stronger
constraints in any region of parameter space that modifies the tt couplings, though depending on the
details of a future collider and the luminosity it accumulates for top quark production this may need
to be revisited in the future.

2.4 Higgs Couplings to Photons and Gluons

The corrections to the Higgs couplings induced by loops of stops and sbottoms have been the subject
of intense recent interest [32, 49, 56–59]. As is well known, stop loops could modify the Higgs coupling
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Figure 1. Loop diagrams contributing to the T parameter operator
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stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

† are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e↵ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe�cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di↵erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].
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†

are integrated out. The diagram at right generates the operators i@⌫Bµ⌫h
†

$
Dµh and iD⌫W i

µ⌫h
†�i

$
Dµh, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
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Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
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Our goal in this paper is to assess the physics potential of these di↵erent colliders, including a
first look at CEPC’s potential accuracy in measurements of Higgs boson couplings and in fits of the
oblique parameters S and T [3, 4] (see also [5–7]). These correspond, in an e↵ective operator language
(reviewed in ref. [8, 9]), to adding to the Lagrangian the following dimension-six operators from the
minimal basis of operators [10]:

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 , (1.1)

where h is the Standard Model Higgs doublet, and we follow the convention hhi ⇡ vp
2

so that v ⇡ 246
GeV. Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms in a supersymmetric theory—
will produce a contribution to S. The masses must additionally be split by custodial symmetry-
violating e↵ects to contribute to T . For example, in the case of the stop and sbottom sector we have
both, and T is numerically dominant [11].

In this paper we estimate the size of the region in the (S, T ) plane that will be allowed after
several suites of high-precision measurements: a “GigaZ” program at the ILC, a “TeraZ” program
at FCC-ee, extended runs of FCC-ee combining Z pole data with data at the W+W� threshold
and the tt threshold, and the Z pole program of CEPC. We present a self-contained discussion of
many of the relative advantages and disadvantages of the di↵erent machines; for example, the Z

mass measurement will be improved only at circular colliders, which can follow LEP in exploiting
resonant spin depolarization. We also emphasize the basic physics of the fits and their potential
bottlenecks, specifying the goals of the electroweak program in future colliders in order to achieve the
best sensitivity. For example, given current data the highest priorities are reducing the uncertainties
on mW for determination of T and of sin2 ✓

e↵

for determination of S, while improved measurements of
the top quark mass or the hadronic contribution to the running of ↵ become important only once other
error bars have been significantly reduced. We hope that a clear discussion of the physics underlying
electroweak fits will help in the planning of future machines, especially for CEPC which is still at a
very early stage. In a companion paper, we will apply the results of this paper to assessing the reach
of future e+e� colliders for natural SUSY scenarios.

Current work on future e+e� colliders draws on an extensive older literature; see, for instance,
refs. [12–16]. For the most part, in determining the expected accuracy achieved by future colliders
we will refer to recent review articles, working group reports, and studies for the ILC and TLEP,
to which we refer the reader for a more extensive bibliography of the years of studies that have led
to the current estimates [1, 2, 17–19]. Results in our plots labeled “ILC” or “TLEP” should always
be understood to mean the new physics reach assuming the tabulated measurement precisions we
have extracted from ILC and TLEP literature (displayed in Tables 1 and 2 below). In particular,
we are reserving judgment about the relative measurement precision of the machines or about how
conservative or optimistic various numbers in the published tables might be. Our results have some
overlap with recent work presented by Satoshi Mishima [20] and Henning, Lu, and Murayama [21].

The paper is organized as follows. In Sec. 2, we describe the general procedure of the electroweak
fit and show the sensitivities of current and future experiments such as ILC and TLEP to new physics
that could be encoded in the S and T parameters. In Sec. 3, we present the first estimate of the reach
for new physics of the electroweak program at CEPC and discuss possible improvements for that
program. In Sec. 4, we explain the details of the uncertainties used in our fits. In Sec. 5, we explain
how improving each observable helps with the fit and o↵er guidelines for the most important steps to
take in future electroweak programs. In Sec. 6, we estimate the reach of the Higgs measurements at
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Figure 4. Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the operator

h†hGa
µ⌫G

aµ⌫ .

to gluons, via diagrams like those of Fig. 4. The leading order contribution could be computed easily
via the low energy Higgs theorem [60, 61]

r
˜t
G ⌘ c˜thgg

cSMhgg
⇡ 1

4

 
m2

t

m2

˜t1

+
m2

t

m2

˜t2

� m2

tX
2

t

m2

˜t1
m2

˜t2

!
, stop contribution to hgg coupling (2.13)

where we neglect D-terms. The low-energy theorem essentially upgrades the log(M
threshold

) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M

threshold

as a function of a variable higgs VEV. The resulting expression is valid for m
˜t1,2 ⇠> mh/2, which we

will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r˜tG

r
˜t
� ⌘ c˜th��

cSMh��
=

A�
˜t

(A�
W +A�

t )
SM

⇡ �0.28r
˜t
G, (2.14)

using A�
W ⇡ 8.33 and A�

t ⇡ �1.84, the amplitudes of h ! �� in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to �(h ! Z�) play a similar role as those for �(h ! ��), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term @µ |h|2 @µ |h|2
(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write
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˜t1
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˜t2

!
, stop contribution to hgg coupling (2.13)
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as a function of a variable higgs VEV. The resulting expression is valid for m
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G, (2.14)
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1 Introduction

H†HG2 (1.1)

The discovery of the Higgs boson has ushered in a new era of electroweak physics. The Standard
Model has proved to be essentially correct, at least as a low-energy e↵ective field theory, in its de-
scription of electroweak symmetry breaking as due to a light, weakly coupled scalar boson. However,
the physics giving rise to the Higgs potential remains completely unclear. If there is a small amount
of fine-tuning in the Higgs sector, we expect new physics at nearby scales. Perhaps the Higgs is
composite (e.g. a pseudo-Nambu Goldstone boson), or perhaps supersymmetry cuts o↵ the quadratic
divergence in the Higgs mass. Although the Large Hadron Collider may yet discover new particles
that o↵er clues to these possibilities, precision measurements of electroweak physics including the
Higgs boson’s properties may also o↵er powerful probes of electroweak symmetry breaking. Several
compelling possibilities for the next step forward in high-precision electroweak physics exist: the Inter-
national Linear Collider [1], which may be built in Japan; FCC-ee, a future circular collider formerly
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Notice that one should not use the results of g from the seven-parameter fits which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb�1 and 1600 fb�1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb�1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb�1 and 2600 fb�1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special point Xt ⇠

q
m2

˜t1
+m2

˜t2
,

r˜tG ⇡ 0 from Eq. 2.13 and the bound vanishes.
The strongest limit on the stop parameters comes from the measurement of hgg coupling. This is

due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X2

t ⇡ m2

˜t1
+m2

˜t2
, all of the precision loop observables we

consider have a significantly poorer reach than for other choices of Xt. This is a “blind spot” for
precision tests of light stops. In calling this choice of Xt a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being finalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
t̃h to determine an e↵ective quartic coupling of the light stop t̃l to the Higgs boson:

+

t̃l t̃l

h h

y2t t̃l

t̃h

t̃l

h h

ytXt ytXt (6.1)

This leads to an e↵ective coupling:

L
e↵

=

 
y2t �

y2tX
2

t

m2

˜th
�m2

˜tl

!
|Hu|2

��t̃l
��2 . (6.2)

This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X⇤
t =

⇣
m2

˜th
�m2

˜tl

⌘
1/2

. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could find this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation @ logm

˜tl
/@ log v = 0 for Xt.
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Exclusion of b to s+photon

deviating from one, we find the following 2� bounds:

ILC� 500 : |b � 1| < 1.3% ) mA > 1.5 TeV, (7.4)

CEPC : |b � 1| < 0.71% ) mA > 2.1 TeV, (7.5)

FCC� ee : |b � 1| < 0.39% ) mA > 2.8 TeV. (7.6)

These bounds on mA imply moderate fine-tuning, unless tan� is large. We estimate the fine-tuning
of the Higgs potential due to large mA to be [4, 17, 70]

�A ⇡ 2m2

A

m2

h tan
2 �

. (7.7)

This shows that a failure to observe a deviation in b will imply either moderate fine-tuning or
moderately large values of tan�. The other tree-level tuning arises from µ [3, 4, 30]:

�µ ⇡ 4µ2

m2

h

. (7.8)

The constraints from b ! s� depend on choices of µ and tan�. They can be made weaker at small tan�
at the cost of larger �A [17]. They could also be made weaker by making µ large to suppress the loop
function, but this increases �µ. There is another possibility of large SUSY-breaking contributions to
higgsino masses that do not a↵ect the EWSB conditions, as from the operator K � X†XD↵HuD↵Hd.
For such an operator to be important, we would require very low-scale SUSY-breaking. This is an
interesting possibility and one that may require more attention if it becomes the only unconstrained
scenario without tuning.

Putting all of this together, we can summarize the implications of precision measurements for
tuning in Fig. 8. The top row displays bounds on stops with no mixing (Xt = 0). We display the
2� bounds on stop masses arising from EWPT (mostly the T -parameter) and from Higgs coupling
constraints (hgg and h��), superimposed on contours of fixed stop contribution to the Higgs mass
tuning. The fine-tunings are again computed using Eq. 7.1 but with Xt = 0 in this case. From the
figure we can see that the ILC would almost fully exclude regions with less than a factor of 20 tuning,
whereas FCC-ee would reach almost to the factor of 50 tuning level. In the second row, we display
constraints on the blind spot where X2

t = m2

˜t1
+m2

˜t2
. In this case, the large Xt will contribute more

to the Higgs mass fine-tuning. One could see that from Eq. 7.1 and by comparing the contours with
the same Higgs mass tuning from stops in the first and second row of Fig. 8. Yet in this case Higgs
coupling measurements are not constraining, and EWPT only exclude a small region at CEPC with
possible improvements or at FCC-ee. However, b ! s� plays an interesting complementary role. We
show exclusion contours (green dashed lines) from b ! s� for the choice µ = 200 GeV and a few
di↵erent values of tan�. Each of these contours is also labeled with the corresponding tunings �µ

and �A. From this we can see that the contour of low stop mass tuning (�
˜t = 10), a blue dashed

line which is barely visible at the lower left, is allowed only by going to tan� < 3, at which point the
tuning �A will be large if no deviation has been observed in b. If we restrict to large enough values of
tan� to suppress �A, then the stop mass tuning �

˜t becomes large. In this way, the interplay between
measurement of the Higgs couplings to fermions and the existing measurements of b ! s� will allow
the blind spot region to be indirectly covered by future e+e� colliders. Notice that we deliberately
choose a positive µ throughout the analysis. The sign of µ will only give a negligible modification to
the calculation of the Higgs mass fine-tuning from the stops. However, for negative µ, the b ! s�

constraint will get considerably stronger.
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Figure 7. Projected constraints in the stop mass plane from a one-parameter fit to the Higgs data from future

experiments. The purple shaded region along the diagonal is excluded because the smallest |Xt| consistent
with the data at 2� is larger than the maximum |Xt| compatible with the mass eigenvalues, as explained in

detail in ref. [32]. The blue shaded region requires tuning Xt to a part in 10 to fit the data. The dot-dashed

red contours quantify fine-tuning in the Higgs mass from the quadratic sensitivity to stop soft terms.

a one-parameter fit to all projected � and � ⇥ Br measurements, which slightly improves the reach.
Specifically, the approach taken in Ref. [32] was based on bounds that allowed other parameters to
float, whereas here we extract stronger bounds by assuming that stops are the only contribution to
the new physics. We also provide, for the first time, an estimate of the reach of CEPC. The combined
ILC 250, 500, and 1000 GeV runs would have a very similar reach to CEPC.

From this plot we see that any future Higgs factory would mostly or entirely rule out regions of
10% fine tuning, but will leave gaps with 5% fine tuning. These gaps occur due to the blind spot
discussed above. As we have noted above, measurements of b ! s� can help to constrain the blind
spot region. However, bounds from b ! s� depend not only on the stop mass matrix but also on µ

and tan�. To provide a perspective on the implications of these bounds for fine-tuning, we should
assess the tree-level tuning arising from µ and from mA.

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale of the heavy
Higgs bosons A0, H0, H± that are present in the MSSM and its extensions. Mixing among the Higgs
bosons will always modify the coupling of the light Higgs to fermions at order m2

h/m
2

A. (We will
collectively denote the masses of all of these particles as mA, although there may be some splitting
between H0 and A0.) The coe�cient is somewhat model dependent. We can estimate the bound on
these couplings by focusing on b, which is well-measured and approximately equal to

b ⌘ ySUSY

hbb

ySMhbb
⇡ 1 + 2

m2

h

m2

A

(7.3)

at large tan� in models where the dominant new quartic coupling beyond the MSSM arises from
nondecoupling D-terms [58, 71, 83]. Models with new quartics arising from F -terms have a somewhat
di↵erent structure, but would yield a similar bound on mA up to order-one factors (especially since
tan� in theories like the NMSSM cannot be very large). Doing a one-parameter fit with only b
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In certain hidden natural SUSY scenarios with non-colored stops"
such as folded SUSY (Burdman, Chacko, Goh, Harnik 2006), Higgs-photon "
coupling have some sensitivity and EWPT could be the most sensitive 
probe in region away from the blind spot.
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Figure 9. Projected constraints in the folded stop mass plane from a one-parameter fit to the Higgs–photon–

photon couplings from future experiments. Directly analogous to Fig. 7. Results from the ILC 250/500/1000

would be similar to CEPC; lower-energy ILC measurements provide even weaker constraints. These constraints

are subdominant to the constraints on left-handed folded stops arising from T -parameter measurements, which

are the same as those for ordinary stops in the left-hand column of Fig. 5.

that we have also taken into account of a precise determination of �(h ! ��)/�(h ! ZZ) at HL-LHC.
It has been demonstrated that combing this with Higgs measurements at future e+e� colliders could
result in a significant improvement of sensitivity to Higgs–photon–photon coupling [86, 87].

On the other hand, the reach of the electroweak precision we derived in this article (the left
column of Fig. 5) applies to folded stops as well as the usual stops. Except for the blind spot in the
parameter space, future EWPT could probe left-handed folded stops, via their correction to the T

parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV (e.g. at FCC-ee). CEPC’s preliminary
plans fall close to the ILC reach, but conceivable upgrades could achieve similar reach to FCC-ee.
These EWPT constraints would surpass the Higgsstrahlung constraints on folded SUSY estimated in
ref. [65]. Improved measurements of the W mass, then, may be one of the most promising routes
to obtaining stronger experimental constraints on folded SUSY. Therefore, with the help of future
electroweak precision measurements, we can test the fine tuning of folded SUSY at the few percent
level.

Acknowledgments

We thank Maxim Perelstein and Witek Skiba for useful discussions and comments. We thank the
CFHEP in Beijing for its hospitality while this work was initiated and a portion of the paper was
completed. The work of MR is supported in part by the NSF Grant PHY-1415548. L-TW is supported
by the DOE Early Career Award under Grant DE-SC0003930.

– 20 –



To sum up, the combined set of precision measurements"
could probe down to a few percent in fine-tuning and stop "
mass to about a TeV.



Thank you !



ILC: GigaZ, threshold scan at the W pair production 
threshold, top threshold scan (~ 105 top pairs)"
!
FCC-ee: TeraZ,  threshold scan at the W pair production 
threshold (~ 108 W’s), top threshold scan (~ 106 top pairs)"
!
CEPC: GigaZ



Sensitivities of future experiments

Purple: Higgs coupling 2σ sensitive region;"
Blue: Higgs coupling fine-tuning worse than 10%;"
Red: Higgs mass fine-tuning contours.
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red contours quantify fine-tuning in the Higgs mass from the quadratic sensitivity to stop soft terms.

a one-parameter fit to all projected � and � ⇥ Br measurements, which slightly improves the reach.
Specifically, the approach taken in Ref. [32] was based on bounds that allowed other parameters to
float, whereas here we extract stronger bounds by assuming that stops are the only contribution to
the new physics. We also provide, for the first time, an estimate of the reach of CEPC. The combined
ILC 250, 500, and 1000 GeV runs would have a very similar reach to CEPC.

From this plot we see that any future Higgs factory would mostly or entirely rule out regions of
10% fine tuning, but will leave gaps with 5% fine tuning. These gaps occur due to the blind spot
discussed above. As we have noted above, measurements of b ! s� can help to constrain the blind
spot region. However, bounds from b ! s� depend not only on the stop mass matrix but also on µ

and tan�. To provide a perspective on the implications of these bounds for fine-tuning, we should
assess the tree-level tuning arising from µ and from mA.

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale of the heavy
Higgs bosons A0, H0, H± that are present in the MSSM and its extensions. Mixing among the Higgs
bosons will always modify the coupling of the light Higgs to fermions at order m2

h/m
2

A. (We will
collectively denote the masses of all of these particles as mA, although there may be some splitting
between H0 and A0.) The coe�cient is somewhat model dependent. We can estimate the bound on
these couplings by focusing on b, which is well-measured and approximately equal to

b ⌘ ySUSY

hbb

ySMhbb
⇡ 1 + 2

m2

h

m2

A

(7.3)

at large tan� in models where the dominant new quartic coupling beyond the MSSM arises from
nondecoupling D-terms [58, 71, 83]. Models with new quartics arising from F -terms have a somewhat
di↵erent structure, but would yield a similar bound on mA up to order-one factors (especially since
tan� in theories like the NMSSM cannot be very large). Doing a one-parameter fit with only b
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Present data LHC14 ILC/GigaZ

↵s(M2

Z) 0.1185± 0.0006 [34] ±0.0006 ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) (276.5± 0.8)⇥ 10�4 [36] ±4.7⇥ 10�5 [23] ±4.7⇥ 10�5 [23]

mZ [GeV] 91.1875± 0.0021 [27] ±0.0021 [23] ±0.0021 [23]

mt [GeV] (pole) 173.34± 0.76
exp

[37] ±0.5
th

[23] ±0.6
exp

± 0.25
th

[23] ±0.03
exp

± 0.1
th

[23]

mh [GeV] 125.14± 0.24 [23] < ±0.1 [23] < ±0.1 [23]

mW [GeV] 80.385± 0.015
exp

[34]±0.004
th

[24] (±8
exp

± 4
th

)⇥ 10�3 [23, 24] (±5
exp

± 1
th

)⇥ 10�3 [23, 38]

sin2 ✓`
e↵

(23153± 16)⇥ 10�5 [27] ±16⇥ 10�5 (±1.3
exp

± 1.5
th

)⇥ 10�5 [20, 38]

�Z [GeV] 2.4952± 0.0023 [27] ±0.0023 ±0.001 [39]

Table 1. The precisions of observables in the simplified electroweak fit where we neglect non-oblique corrections

and parametrize the new physics contributions to electroweak observables in S and T . The first five observables

in the table and S, T are free in the fit while the remaining three are determined by the free ones. We quote the

precisions of current, high luminosity LHC and ILC measurements as well as the current central values. Entries

that do not display a theory uncertainty either incorporate it into the experimental error bar or have a small

enough theoretical uncertainty that it can be neglected. At the ILC, the non-negligible theory uncertainties

of the derived observables mW , sin2 ✓`
eft

and �Z come from unknown four-loop contributions assuming that in

the future, the electroweak three-loop correction will be computed. In Sec. 4, we will explain in details the

origins of all the numbers we used.

TLEP-Z TLEP-W TLEP-t
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± 0.25
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exp
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± 0.1
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mW [GeV] (±8
exp
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)⇥ 10�3 [23, 38] (±1.2
exp

± 1
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)⇥ 10�3 [20, 38] (±1.2
exp

± 1
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)⇥ 10�3 [20, 38]

sin2 ✓`
e↵

(±0.3
exp

± 1.5
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)⇥ 10�5 [20, 38] (±0.3
exp

± 1.5
th

)⇥ 10�5 [20, 38] (±0.3
exp

± 1.5
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)⇥ 10�5 [20, 38]

�Z [GeV] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26]

Table 2. The precisions of electroweak observables in the simplified electroweak fit at TLEP. We consider

three scenarios: TLEP-Z: Z pole measurement (including measurements with polarized beams); TLEP-W :

Z pole measurement plus scan of WW threshold; TLEP-t: Z pole measurement, W threshold scan and top

threshold scan. The TLEP experimental precisions are taken from either [2] and [20], where we always chose

the more conservative numbers. Entries that do not display a theory uncertainty either incorporate it into the

experimental uncertainty or have a small enough theoretical uncertainty that it can be neglected. Theoretical

uncertainties may matter for mZ at TLEP, but we lack a detailed estimate and have not incorporated them.

Similar to ILC, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. In Sec. 4, we will explain in details the origins of all the numbers we used.

We will present the first estimate of the reach for new physics of the electroweak program at CEPC
based on the talk in [41]. The precisions of the electroweak observables used in the simplified fit are
summarized in Table. 3.2 The W mass precision is based on the direct measurement in

p
s = 240

GeV running with 100 fb�1 integrated luminosity. The precisions of Z mass and weak mixing angle

2The summary table in the talk [41] quotes an achievable precision for sin2 ✓`
e↵

of 0.01%, but based on the earlier

slides and personal communication with Zhijun Liang we expect that 0.02% is a reasonably optimistic choice.
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