Future Circular Collider (FCC) Study

M. Benedikt, F. Zimmermann gratefully acknowledging input from FCC global design study team

- Motivation & scope
- Parameters & challenges
- Study organization
- Summary

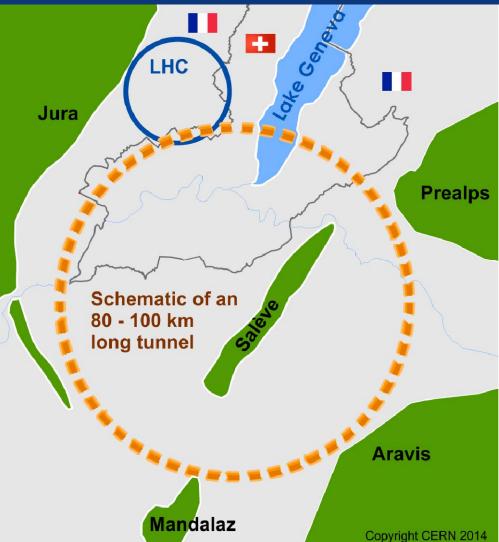
Summary: European Strategy Update 2013 Design studies and R&D at the energy frontier

...."to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update":

- d) CERN should undertake design studies for accelerator projects in a global context,
 - with emphasis on proton-proton and electron-positron highenergy frontier machines.
 - These design studies should be coupled to a vigorous accelerator *R&D programme, including high-field magnets and high- gradient accelerating structures*,
 - in collaboration with national institutes, laboratories and universities worldwide.
 - http://cds.cern.ch/record/1567258/files/esc-e-106.pdf

strategy adopted at Brussels in May 2013, during exceptional session of the CERN Council in presence of the European Commission

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)


Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → main emphasis,
 defining infrastructure

~16 T ⇒ **100 TeV** *pp* in **100 km** ~20 T ⇒ 100 TeV *pp* in 80 km

- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

hadron collider: presently and for coming decades the only option for exploring energy scale at 10's of TeV

The name of the game of a hadron collider is energy reach

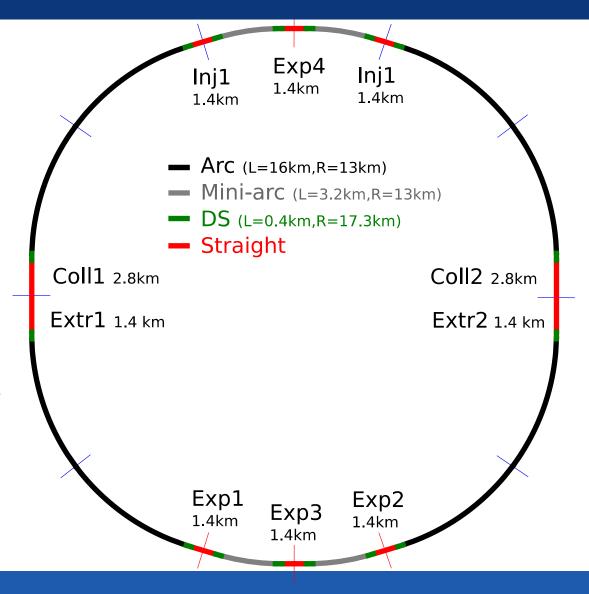
$$E \propto B_{dipole} \times \rho_{bending}$$

Cf. LHC: \rightarrow factor 3.5-4 in radius, \rightarrow factor 2 in field \rightarrow factor 7-8 in energy

FCC-hh baseline parameters

parameter	FCC-hh	LHC
energy	100 TeV c.m.	14 TeV c.m.
dipole field	16 T	8.33 T
#IP	2 main, +2	4
normalized emittance	2.2 μ m	3.75 μ m
luminosity/IP _{main}	5 x 10³⁴ cm⁻²s⁻¹	1 x 10 ³⁴ cm ⁻² s ⁻¹
energy/beam	8.4 GJ	0.39 GJ
synchr. rad.	28.4	0.17 W/m/apert.
	W/m/apert.	
bunch spacing	25 ns (5 ns)	25 ns

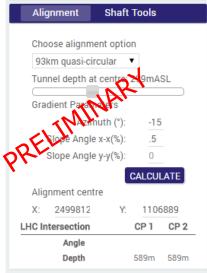
Preliminary, subject to evolution (several luminosity scenarios)

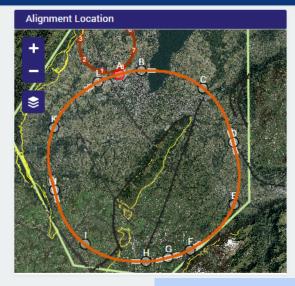


Preliminary layout

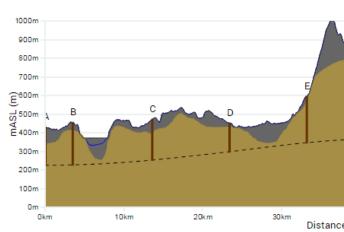
Preliminary layout (different sizes under investigation)

- ⇒ Collider ring design (lattice/hardware design)
- \Rightarrow Site studies
- \Rightarrow Injector studies
- \Rightarrow Machine detector interface
- \Rightarrow Input for lepton option


Iterations needed



Site study 93 km example



	S	haft D	epth (r	n)	Geology (m)					
Point	Actual	Min	Mean	Max	Quaternary	Molasse	Urgonian	Calcaire		
Α	203		204	212			0	0		
В	227	219	226							
С	218		217	225						
D	153		154							
Е	247		249							
F	262			304						
G	396	392		396						
н	266		274	322						
I	146		144	149		120				
J	248	247								
К	163			164						
L	182	182	184	187						
Total	2711	2607	2724	2867	585	2185	0	0		

Shaft Depths

Alignment Profile

Preliminary conclusions:

• 93km fits geological situation really well, better than a smaller ring size.

Geology Intersected by Shafts

- 100km tunnel seems also well compatible with geological considerations.
- Distance The LHC could be used as an injector

Geology Intersected by Tunnel

CERN

FCC-hh: high-field magnet R&D

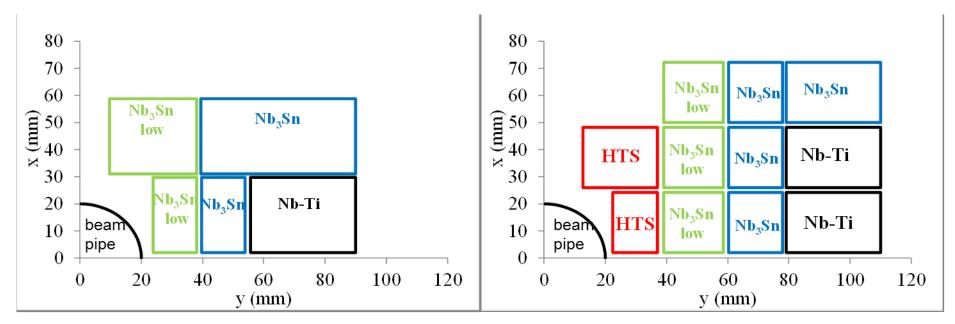
• FHC baseline is 16T Nb₃Sn technology for ~100 TeV c.m. in ~100 km

Develop Nb₃Sn-based 16 T dipole technology (at 4.2 K?),

- conductor developments
- short models with sufficient aperture (40 50 mm) and
- accelerator features (margin, field quality, protect-ability, cycled operation).

Goal: 16T short dipole models by 2018/19 (America, Asia, Europe)

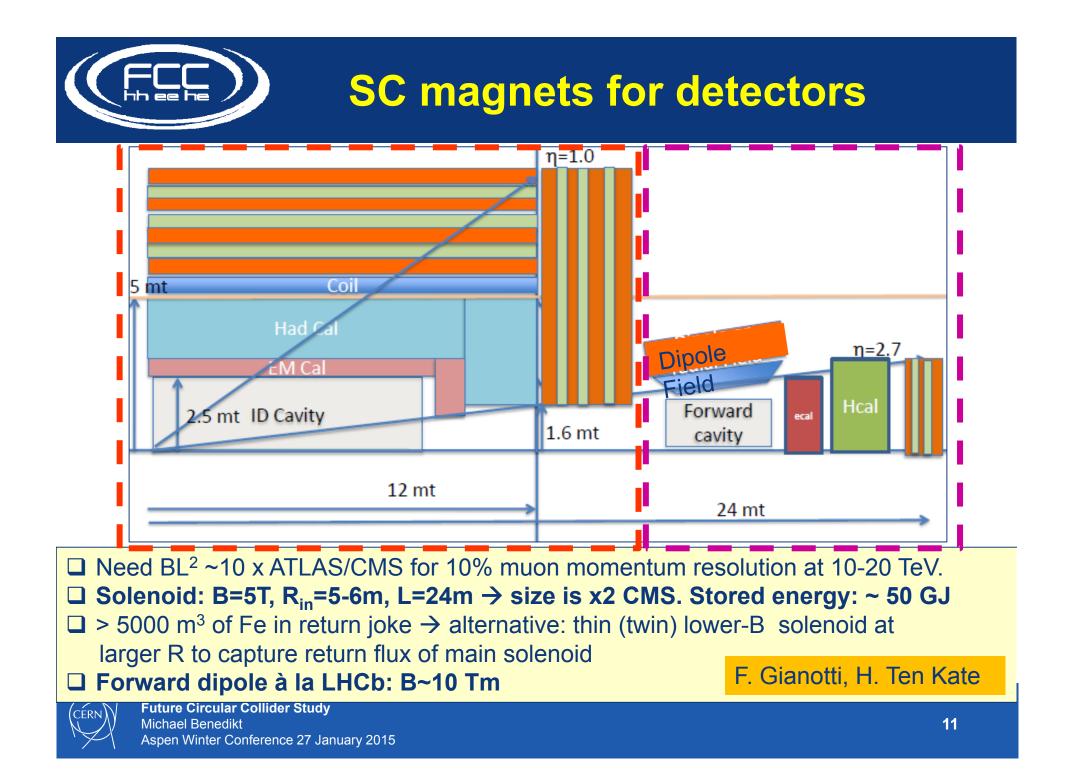
• In parallel HTS development targeting 20 T (option and longer term)


Goal: Demonstrate HTS/LTS 20 T dipole technology:

- 5 T insert (EuCARD2), ~40 mm aperture and accelerator features
- Outsert of large aperture ~100 mm, (FRESCA2 or other)

Key design issue: cost-optimized high-field dipole magnets

Arc magnet system will be the major cost factor for FCC-hh



only a quarter is shown

"hybrid magnets" example block-coil layout

L. Rossi, E. Todesco, P. McIntyre

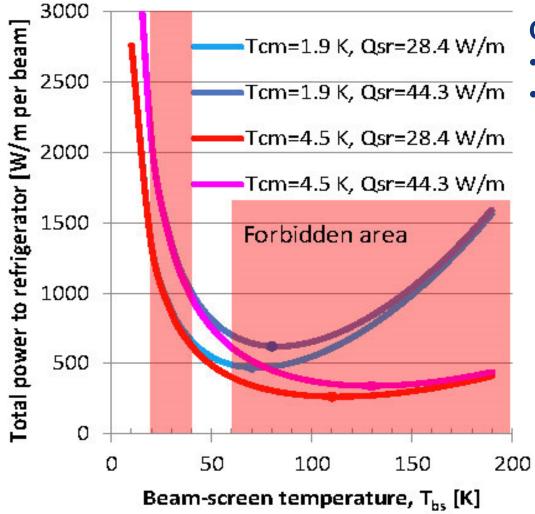
Stored beam energy: 8 GJ/beam (0.4 GJ LHC) = 16 GJ total
 equivalent to an Airbus A380 (560 t) at full speed (850 km/h)

Collimation, beam loss control, radiation effects: very important
 Injection/dumping/beam transfer: very critical operations
 Magnet/machine protection: to be considered early on

Synchrotron radiation/beam screen

High synchrotron radiation load (SR) of protons @ 50 TeV:

- ~30 W/m/beam (@16 T)
- \rightarrow 5 MW total in arcs
- → (LHC <0.2W/m)



- Beam screen to capture SR and "protect" cold mass
- Power mostly cooled at beam screen temperature;
- Only minor part going to magnets at 2 4 K
 → Optimisation of temperature, space, vacuum,
 impedance, e-cloud, etc.

Cryo power for cooling of SR heat

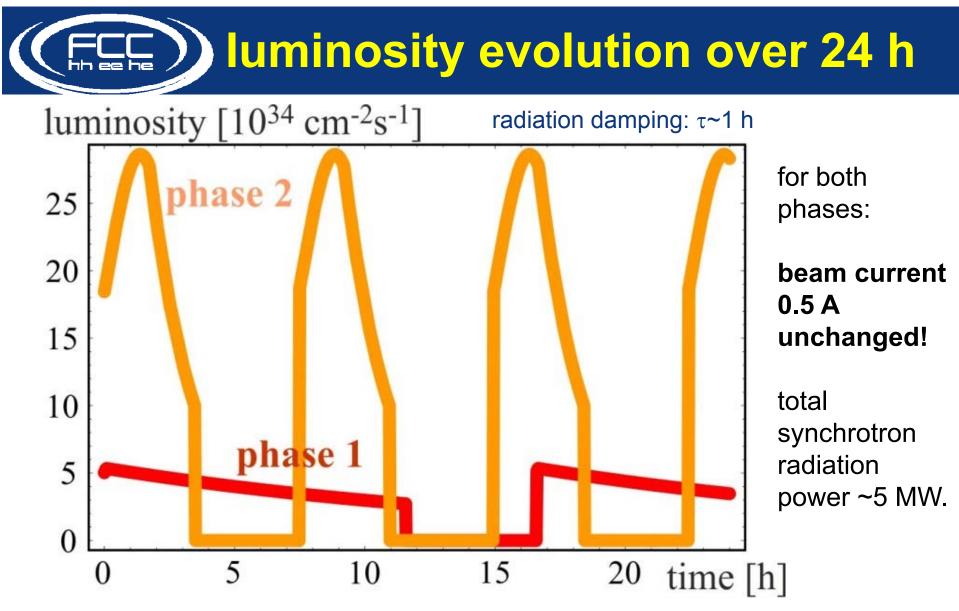
Contributions to cryo load:

- beam screen (BS) &
- cold bore (BS heat radiation)

At 1.9 K cm optimum BS temperature range: 50-100 K; But impedance increases with temperature \rightarrow instabilities

40-60 K favoured by vacuum & impedance considerations

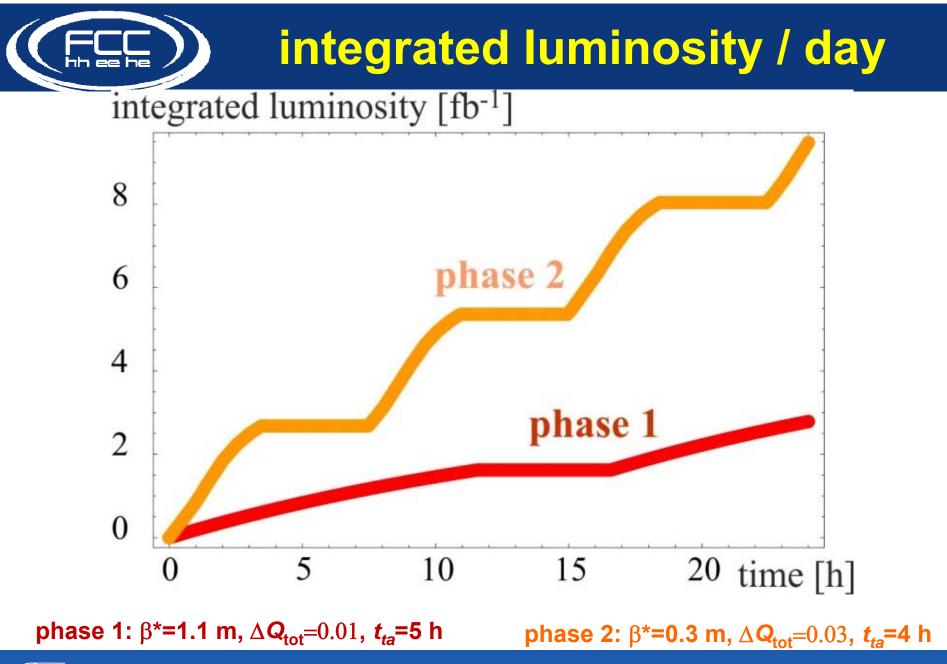
→ 100 MW refrigerator power on cryo plant


P. Lebrun, L. Tavian

FCC luminosity goals & phases

- FCC-hh general considerations (assuming operation over 25 years)
 - Initial luminosity should be equal to final HL LHC luminosity

 5x10³⁴ cm⁻²s⁻¹ with ~125 days effective operation / year
 - Integrated luminosity (10 years, 125 days eff. operation/y) should be
 ~ equal to LHC total luminosity → O(3000 fb⁻¹).
 - FCC total luminosity should be one order higher than LHC total → O(30,000 fb⁻¹)
- Present parameter sets for the two operation phases:
 - phase 1 (baseline):
 - 5x10³⁴ cm⁻²s⁻¹ (peak), average 250 fb⁻¹/year (stops incl.)
 - → 2500 fb⁻¹ within total of 10 years (~HL LHC total luminosity)
 - phase 2 (ultimate):
 - ~2.5x10³⁵ cm⁻²s⁻¹ (peak), average 1000 fb⁻¹/year (stops incl.)
 - → 15,000 fb⁻¹ within 15 years (~6x HL-LHC total luminosity).
 - yielding total luminosity ~17,500 fb⁻¹ over 25 years of operation



phase 1: $\beta^*=1.1 \text{ m}, \Delta Q_{tot}=0.01, t_{ta}=5 \text{ h} \rightarrow \text{phase 2: } \beta^*=0.3 \text{ m}, \Delta Q_{tot}=0.03, t_{ta}=4 \text{ h}$

Future Circular Collider Study Michael Benedikt Aspen Winter Conference 27 January 2015

Lepton collider FCC-ee

- Name of the game here luminosity: as many collisions as possible → high beam current, small beam size.
- Energy reach of circular e⁺e⁻ colliders is limited due to synchrotron radiation of charged particles on curved trajectory:

$$\Delta \mathbf{E} \propto (\mathbf{E}_{kin}/\mathbf{m}_0)^4/\rho$$

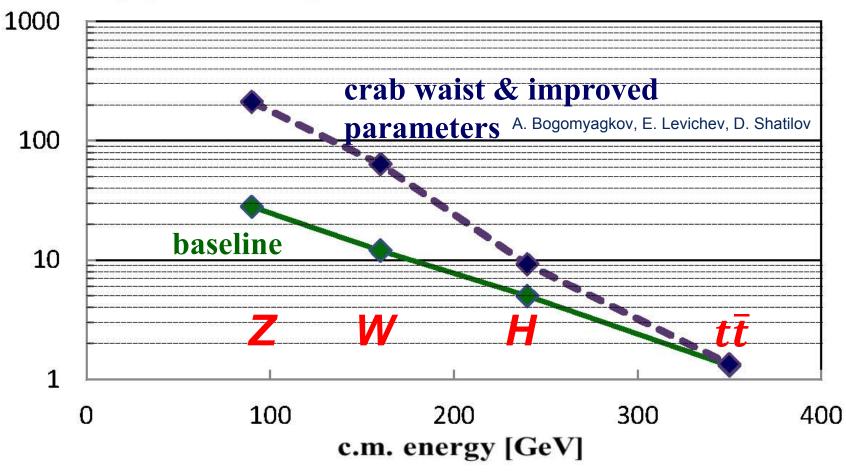
$$m_{prot} = 2000 \ m_{electr}$$

$$\approx \frac{2}{\gamma}$$

Lepton collider FCC-ee parameters

- Design choice: max. synchrotron radiation power 50 MW/beam
 - Defines the max. beam current at each energy
 - 4 Physics working points
 - Optimization at each energy (bunch number & current, etc).

Parameter	Z	WW	Н	tt _{bar}	LEP2
E/beam (GeV)	45	80	120	175	104
l (mA)	1450	152	30	6.6	3
Bunches/beam	16700	4490	1360	98	4
Bunch popul. [10 ¹¹]	1.8	0.7	0.46	1.4	4.2
L/IP (10 ³⁴ cm ⁻² s ⁻¹)	28.0	12.0	6.0	1.7	0.012


- Large number of bunches at Z and WW and H requires 2 rings.
- High luminosity means short beam lifetime (few mins) and requires continues injection.

FCC-ee luminosity vs energy

luminosity [10³⁴ cm⁻²s⁻¹] / IP

Future Circular Collider Study Michael Benedikt Aspen Winter Conference 27 January 2015

FCC-ee key parameters

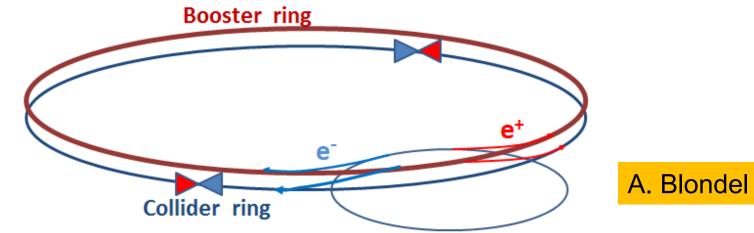
parameter	FCC-ee	LEP2
energy/beam	45 – 175 GeV	105 GeV
bunches/beam	98 – 16700	4
beam current	6.6 – 1450 mA	3 mA
hor. emittance	~2 nm	~22 nm
emittance ratio $\varepsilon_y/\varepsilon_y$	0.1%	1%
vert. IP beta function β_y^*	1 mm	50 mm
luminosity/IP	1.8-28 x 10 ³⁴ cm ⁻² s ⁻¹	0.0012 x 10 ³⁴ cm ⁻² s ⁻¹
energy loss/turn	0.03-7.55 GeV	3.34 GeV
synchrotron radiation power	100 MW	23 MW
RF voltage	2.5 – 11 GV	3.5 GV

Preliminary, subject to evolution (staging scenarios)

FCC-ee: RF parameters and R&D

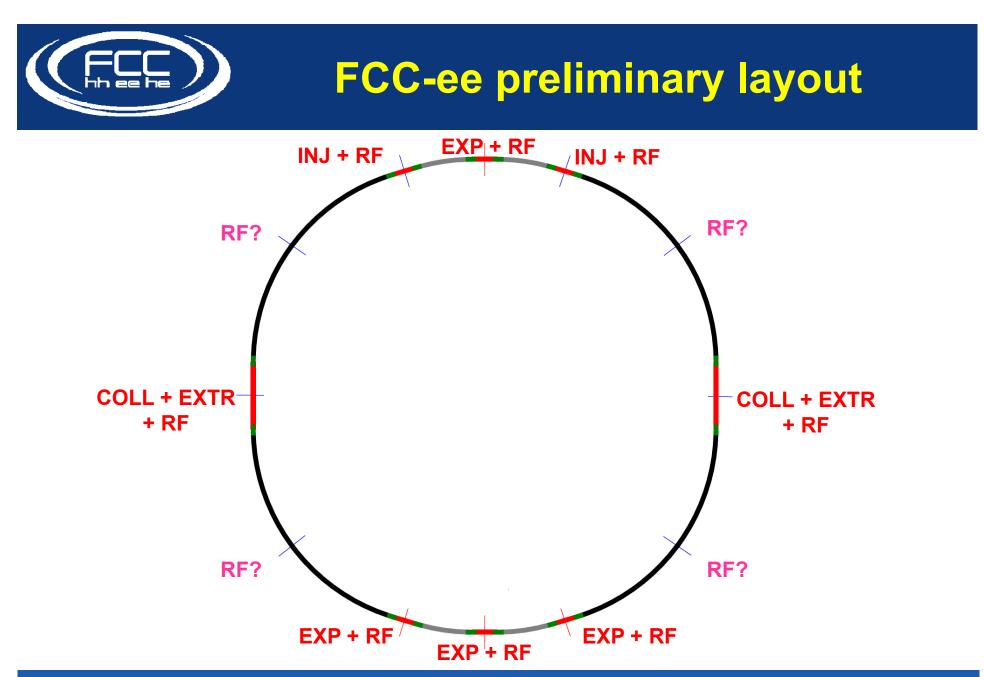
- Synchrotron radiation power: 50 MW per beam
- Energy loss per turn: up to 7.5 GeV (at 175 GeV, t)
- System dimension compared to LEP2::
 - LEP2: 352 MHz RF freq., 3.5 GV voltage, 22 MW SR power (27 km)
 - FCC-ee: 400 MHz RF freq,,12 GV voltage, 100 MW SR power (100 km)
- R&D Goal is optimization of overall system efficiency and cost!
 - **1.** SC cavity R&D \rightarrow large Q_0 , high gradient, acceptable cryo power!
 - Recent promising results at 4 K with Nb3Sn coating on Nb at Cornell,
 - 800 °C \div 1400 °C heat treatment JLAB, beneficial effect of impurities FNAL.
 - 2. High efficiency RF power generation from electrical grid to beam
 - Amplifier technologies
 - Klystron efficiencies >65%, alternative RF sources as solid state amplifier, etc.

3. High reliability



FCC-ee top-up injector

Beside the collider ring(s), a booster of the same size (same tunnel) must provide beams for top-up injection


- same RF voltage, but low power (~ MW)
- top up frequency ~0.1 Hz
- booster injection energy ~5-20 GeV
- bypass around the experiments

injector complex for e⁺ and e⁻ beams of 10-20 GeV

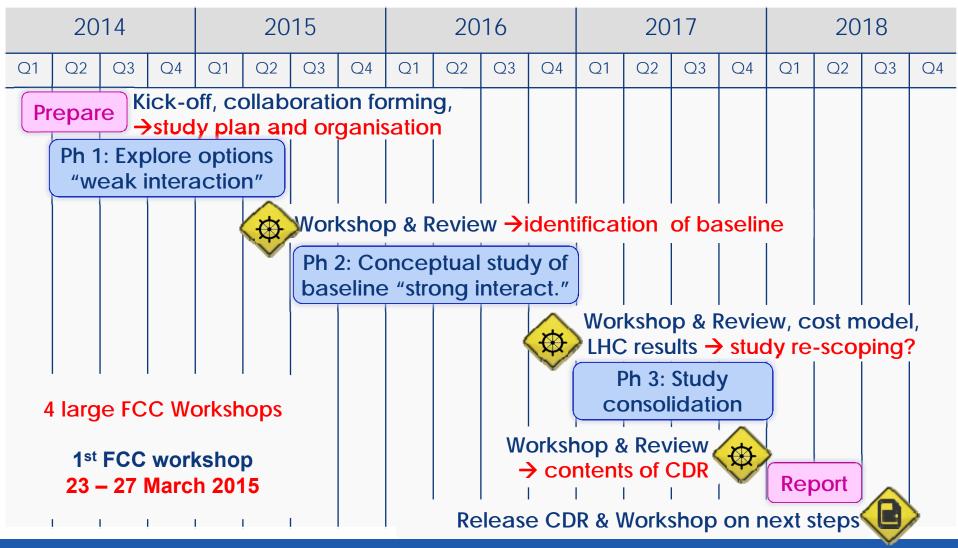
• Super-KEKB injector ~ almost suitable

Future Circular Collider Study Michael Benedikt Aspen Winter Conference 27 January 2015

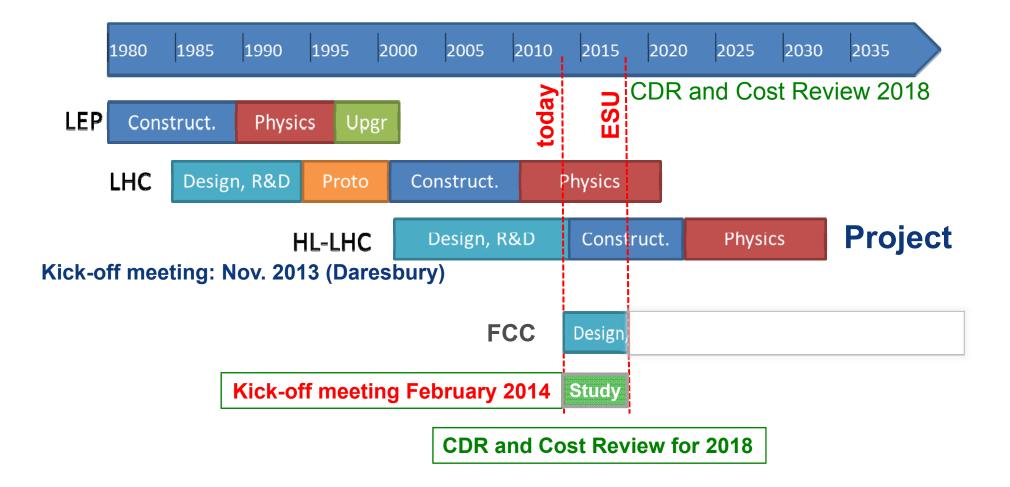
Tentative FCC-he parameters

parameter	e⁻	p					
energy/beam	60 GeV (ERL)	50 TeV					
bunches/beam	-	10600					
bunch intensity	5x10 ⁹	10 ¹¹					
hor. & vert. emittance	0.17 nm	0.04 nm					
emittance ratio $\varepsilon_{\rm y}/\varepsilon_{\rm y}$	1	1					
IP beta function $\beta_{x,y}^{*}$	100 mm	400 mm					
IP beta function $\sigma_{x,y}^*$ 4 μ m							
luminosity/IP	1.0 x 10 ³⁴ cm ⁻² s ⁻¹						
synchrotron power	~50 MW	2.5 MW					
Proliminary subject to evolution (staging scenarios)							

Preliminary, subject to evolution (staging scenarios)


FCC study status

- Study launched at FCC kick-off meeting in Feb. 2014
- Presently forming a global collaboration based on general MoU between CERN and individual partners. Specific addenda for each participant.
- First international collaboration board meeting on 9. and 10. September 2014 at CERN. Chair Prof. L. Rivkin (PSI/EPFL).
- Design study proposal for EU support in the Horizon 2020 program was submitted, evaluation expected end Jan 2015.
- First FCC Week workshop from 23. to 27. March in Washington DC.


FCC work plan study phase

LHC roadmap and FCC study

FCC MoU Status

43 collaboration members & CERN as host institute , 21 Jan. 2015

ALBA/CELLS, Spain **U** Bern, Switzerland **BINP, Russia** CASE (SUNY/BNL), USA **CBPF, Brazil CEA Grenoble, France CIEMAT, Spain CNRS**, France **Cockcroft Institute, UK** U Colima, Mexico CSIC/IFIC, Spain **TU Darmstadt, Germany DESY, Germany TU Dresden, Germany** Duke U, USA

EPFL, Switzerland Gangneung-Wonju Nat. U., Korea U Geneva, Switzerland **Goethe U Frankfurt, Germany GSI**, Germany Hellenic Open U, Greece **HEPHY, Austria IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Avdin U., Turkey

JAI/Oxford, UK JINR Dubna, Russia **KEK**, Japan **KIAS, Korea** King's College London, UK Korea U Sejong, Korea **MEPhl**, Russia Northern Illinois U., USA **NC PHEP Minsk, Belarus PSI, Switzerland** Sapienza/Roma, Italy UC Santa Barbara, USA U Silesia, Poland **TU Tampere, Finland**

FCC Week 2015

♦IEEE International Future Circular Collider Conference March 23 - 27, 2015 | Washington DC, USA

> **Organising & Scientific Program Committee:** N. Arkani-Hamed (Princeton U.) E. Levichev (BINP) A. Ball (CERN) W. Barklow (SLAC) T. Barletta (MIT) M. Benedikt (CERN) A. Blondel (U. Geneva) F. Bordry (CERN) L. Bottura (CERN) O. Bruning (CERN) W. Chou (FNAL, IHEP) P. Collier (CERN) E. Delucinge (CERN) M. D'Onofrio (U. Liverpool) J. Ellis (King's College) F. Gianotti (CERN) B. Goddard (CERN) S. Gourlay (LBNL) C. Grojean (ICREA) J. Gutleber (CERN) G. Hoffstaetter (Cornell U.) J. Incandela (UCSB) P. Janot (CERN) E. Jensen (CERN) J.M. Jimenez (CERN) M. Klein (U. Liverpool) M. Klute (MIT) A. Lankford (UCI) D. Larbalestier (NHFML) P. Lebrun (CERN) L.K. Len (DOE)

J. Lykken (FNAL) M. Mangano (CERN) S. Nagaitsev (FNAL) T. Ogitsu (KEK) K. Oide (KEK) V. Palmieri (INFN LNL) A. Patwa (DOE) F. Perez (ALBA-CELLS) C. Potter (CERN) Q. Qin (IHEP) R. Rimmer (JLAB) T. Roser (BNL) L. Rossi (CERN) D. Schulte (CERN) M. Seidel (PSI) A. Seryi (JAI) B. Strauss (DOE) S. Strauss R. Sundrum (U. Maryland) S. Su (U. Arizona) M. Syphers (MSU) L. Tavian (CERN) E. Todesco (CERN) R. Van Kooten (Indiana U.) P. Vedrine (CEA) J. Wenninger (CERN) U. Wienands (SLAC) F. Zimmermann (CERN)

0

Office of

Science

Allelerati

First FCC Week

Conference

Washington DC 23-27 March 2015

http://cern.ch/fccw2015

Further information and registration http://cern.ch/fccw2015

EUCARD²

First FCC Week, Washington DC 23-27 March 2015 – DRAFT SCHEDULE

Monday (23.3) Tuesday (24.3		Tuesday (24.3)		Wednesday (25.3)		Thursday (26.3)				Friday (27.3)		
Registration	Welcome	FCC-hh	FCC-ee Detectors	Novel SRF cavity concepts &	Machine Configuration &	FCC-hh Experiments	FCC-ee Lattice Design &	Civil Engineering	g Magnet Design Options	Cryogenic Beam Vacuum System	Physics & Phenomenology	Summary FCC-hh collider
	Plenary: study overview	Lattice Design &						handling &				Summary FCC-ee collider
	Pienary, study overview	Optics	Detectors	cryomodules	Magnet Specs	Experiments	Optics	transport	Design options		rnenomenology	Summary infrastructure
Coffee Break Coffee Break		Coffee Break		Coffee Break				Coffee Break				
Plenary: Physics motivation and overview Plenary: Machine overview (hh, ee)			FCC-ee	Novel SRF cavity concepts &	Conductor R&D	FCC-hh	FCC-ee EIR Design &	Reliability, Energy, Controls, IT	Magnet Design Options	Beam Transfer Systems &	Physics & Phenomenology	Summary technologies
			Physics studies &									Summary FCC-hh experiments
Plenar	ry: Machine overview (nn, ee)	technology	Simulations	cryomodules		Experiments	MDI	Controls, II	Design Options	Instrumentation	rnenomenology	Summary FCC-ee experiments
										Conclusions and outlook		
Lunch Lunch			Lunch		Lunch				Lunch			
Plenary: Infrasti	ructure and Civil Engineering Overview	FCC-hh EIR Design & MDI	FCC-ee MDI	Coating technologies for SRF cavities	Conductor R&D	FCC-hh Experiments	FCC-ee Beam-beam & Energy Calib.	Cryogenics, Safety	Magnet Design Options	Materials & Engineering Breakthroughs	Physics & Phenomenology	International Collaboration Board
Plena	ary: Magnet and RF overview	Coffee Break		Coffee Break		Coffee Break				Coffee Break		
	Coffee Break	FCC-hh	FCC-he	Higher			FCC-ee					
Plenary:	: Special Technologies Overview	Injector Options & Design	Parameters, EIR & Detector Design	Efficiency RF Power Generation	TBD	FCC-he Physics Highlights	Injector & Booster Design	TBD	Magnet Cost Model	Magnet & Machine Protection	Physics & Phenomenology	EuroCirCol Coordination Committee
	Teatime	Teatime			Teatime		Teatime				Break	
	Study organisation, governance, quality, documentation	Gender Equality working group	EuroCirCol schedule working group	Industry Fast Track	Communications	FCC-hh and FCC-ee parameter working	Technologies R&D working group	Plenary: US Contributions			FCC International Steering Committee	
Welcome reception			20 1			group						5
					Workshop Banquet							
						Workshop Banquet						

hoping to see you there!

Conclusions

- There are strongly rising activities in energy-frontier circular colliders worldwide.
- The FCC collaboration is being formed with CERN as host laboratory, to conduct an international study for the design of Future Circular Colliders (FCC).
- FCC presents many challenging R&D requirements in SC magnets, SRF and other technical areas.
- Global collaboration in physics, experiments and accelerators and the use of all synergies is essential to move forward.

