Strong CP motivations for TeV scale physics

Anson Hook
IAS

Outline

- The Strong CP problem
- Previous solutions
- A new solution with colored TeV particles

Classical Strong CP problem

Neutron contains an up quark and two down quarks

Classical Strong CP problem

Electric Dipole moment

Expected Dipole moment

Dimensional analysis suggests

$$d_n \sim 10^{-14} e \, \text{cm}$$

Observed bound is

$$|d_n| < 2.9 \times 10^{-26} e \,\mathrm{cm}$$

Quantum Strong CP problem

$$\mathcal{L} \supset \frac{g^2}{32\pi^2} \theta G_{\mu\nu} \tilde{G}^{\mu\nu} + Y_u H Q u^c + Y_d H^{\dagger} Q d^c$$

Neutron EDM can be calculated

Quantum calculation

$$|d_n| = 3.2 \times 10^{-16} (\theta + \text{arg det} Y_u Y_d) e \text{ cm}$$

$$\theta + \arg \det Y_u Y_d \equiv \overline{\theta} < 10^{-10}$$

Outline

- The Strong CP problem
- Previous solutions
- A new solution with colored TeV particles

Axion solution

$$\mathcal{L} \supset \frac{g^2}{32\pi^2} (\theta - \frac{a}{f_a}) G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a$$

Axion dynamically sets the neutron EDM to 0

$$|d_n| = 3.2 \times 10^{-16} \left(\overline{\theta} - \left\langle \frac{a}{f_a} \right\rangle \right) e \,\mathrm{cm}$$

Discrete Symmetries

- CP and P can both set the neutron EDM to 0
- Require one to be a good symmetry of nature
 - Spontaneously break the symmetry while
 - Arranging for CKM phase to be large
 - Arranging for neutron EDM to be small
- Nelson-Barr approach

Massless up quark

$$U \to e^{i\alpha}U$$

$$U \to e^{i\alpha}U \qquad \overline{U} \to e^{i\alpha}\overline{U} \qquad \theta \to \theta + 2\alpha$$

$$\theta \to \theta + 2\alpha$$

No invariant to construct EDM out of Must vanish

$$|d_n| = 3.2 \times 10^{-16} (\theta + \text{arg det} Y_u Y_d) \frac{m_u m_d}{(m_u + m_d)} \frac{1}{1.6 \text{ MeV}} e \text{ cm}$$

$$m_u \to 0$$

$$\Rightarrow$$

$$\Rightarrow d_n \to 0$$

Massless up quark solution

$$U \to e^{i\alpha}U$$

$$\overline{U} \to e^{i\alpha} \overline{U}$$

$$U \to e^{i\alpha}U \qquad \overline{U} \to e^{i\alpha}\overline{U} \qquad \theta \to \theta + 2\alpha$$

In the IR

$$\langle U\overline{U}\rangle \neq 0$$

- Anomalous symmetry is spontaneously broken
 - Looks like axion solution

Massless up quark

$$\mathcal{L}_{IR} = \frac{m_{\eta'}^2}{2} \left(\eta' - f_{\eta'} \overline{\theta} \right)^2 + f(\eta' - f_{\eta'} \overline{\theta})$$

- η' boson obtains a vev which removes θ from the IR
 - η' acts as the axion

Status of the massless up quark

$$m_u = 2.3^{+0.7}_{-0.5} \text{ MeV}$$

Massless up quark solution ruled out

Outline

- The Strong CP problem
- Previous solutions
- A new solution with colored TeV particles

Generalized massless up quark solution

- 40 years since it was invented
 - Why throw away a good idea?
- Simplest generalization of the massless up quark solution

Generalized massless up quark solution

- Before confinement there is a massless quark
- There is a sector which confines
- After confinement, the vev of the η' boson removes θ from the IR

- Before confinement there is a massless quark
- There is a sector which confines
- After confinement, the vev of the η' boson removes θ from the IR

Add new massless quarks

- There is a sector which confines
- After confinement, the vev of the η' boson removes θ from the IR

Add a new confining gauge group

Before confinement there is a massless quark

There is a sector which confines

 After confinement, the vev of the η' boson removes θ from the IR

$$\mathcal{L} \supset \frac{g^2}{32\pi^2} \left(\theta - \frac{N}{3} \frac{\eta'}{f_{\eta'}} \right) G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{m_{\eta'}^2}{2} \left(\eta' - f_{\eta'} \theta' \right)^2 + \cdots$$

The eta prime boson changes our theta angle

$$\overline{\theta} = \theta + \arg \det Y_u Y_d - \frac{N}{3}\theta'$$

To solve Strong CP problem, we need

$$\theta' = \frac{3}{N}(\theta + \arg \det Y_u Y_d)$$

 Seems strange to have a new gauge group with exactly this theta angle

To solve Strong CP problem, we need

$$\theta' = \frac{3}{N}(\theta + \arg \det Y_u Y_d)$$

- Seems strange to have a new gauge group with exactly this theta angle
- We know of a gauge group with exactly this theta angle: QCD!

New confined gauge group is a copy of QCD

Before confinement there is a massless quark

There is a sector which confines

 After confinement, the vev of the η' boson removes θ from the IR

Copying QCD

- How much do we need to copy?
- Copy leptons
 - Anomaly considerations
- Mirror QCD spontaneously breaks SU(2)
 - Copy Higgs and SU(2)
- Everything but U(1)

Constraints

What are the constraints on this model?

Constraints

- We do not see a mirror sector
- The mirror sector must have larger masses
- The Higgs vev in the other sector must be much larger than ours!
 - For the sake of plotting results, set it to 10¹⁴ GeV

Higher dimensional operators

$$\frac{g^2}{32\pi^2} \left(\frac{HH^{\dagger}}{M_{pl}^2} G\tilde{G} + \frac{H'H'^{\dagger}}{M_{pl}^2} G'\tilde{G}' \right)$$

Solutions to the strong CP problem strongly constrained by higher dimensional operators

$$\overline{\theta} = \frac{H'H'^{\dagger} - HH^{\dagger}}{M_p^2} \approx \frac{\langle H' \rangle^2}{10^{38} \text{GeV}^2} < 10^{-10}$$

$$H' \lesssim 10^{14} \, \mathrm{GeV}$$

Observable signatures come from the pseudo-goldstone bosons

- Observable signatures come from the pseudo-goldstone bosons
 - Color octet scalars
- Obtain a 1-loop mass from gauge boson loops
- Like charged pions, quadratic divergence cut off by rho mesons

$$m_{\pi'}^2 \approx \frac{9\alpha_s}{4\pi} m_{\rho'}^2$$

Pions decay through the anomaly into a pair of gluons

Collider bounds

4 jet event with a pair of resonances

New CMS result:

hep-ex / 1412.7706

8 TeV, 19.4 fb⁻¹

Collider bounds

4 jet event with a pair of resonances

New CMS result:

hep-ex / 1412.7706

8 TeV, 19.4 fb⁻¹

Conclusion

- A strong CP problem solution which is testable at colliders!
 - 4 jets with two resonances
- Discrete symmetry solutions also subject to the same constraints
 - Some also predict colored particles with mass smaller than 10 TeV
 - 4th generation particles which decay in an unexpected manner