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Nothing but Higgs, with~10-20% Precision for Higgs couplings 
so far  

mH=
𝜇=



New era of precision studies of the Higgs sector
 (from Snowmass Higgs working group report): Higgs precision will approach that of EWP



Part I: Precision Higgs Analysis: expansion formalism of 
the Higgs boson partial widths and branching fractions

❖ The sub-percent-level determination of the Higgs boson mass 
now enables a complete set of input observables whereby any 
perturbative high-energy observable involving the Higgs boson 
can be predicted.

❖ careful exposition of the decay partial widths and branching 
fractions of a SM Higgs boson with mass near 125 GeV.

❖  state-of-the-art formulas that can be used in any precision 
electroweak analysis to investigate compatibility of the data 
with the SM predictions in these most fundamental and 
sensitive observables

 L. Almeida, S.L., S. Porkorski, J. Wells
arXiv:1311.6721v3



What’s new in our expansion formalism?

❖ Other calculations exist in the literature, mostly notably 
from the computer program HDECAY; however, we wish 
to provide an independent calculation that includes the 
latest advances and allows us to vary the renormalization 
scale in all parts of the computations. This flexibility will be 

useful in discussions regarding uncertainties
❖ We also aim to detail the errors that each input into the 

computation propagates to the final answer for each 
observable



Our Expansion Formalism of Partial Widths and Uncertainties
Taylor expand the full expressions for partial width around the input observables. This 
expansion is made possible by the fact that with the discovery of the Higgs boson, and 
knowledge of its mass, all input observables are now known to good enough accuracy to 
render an expansion of this nature useful and accurate.
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Expansion of BR and ratio of BRs

the uncertainty in the b-quark mass input 
observable constitutes the largest uncertainty 

in the branching ratio computations.

The large uncertainty of the charm quark mass 
is the decisive contributor to H ->cc 

uncertainty as well



How well can we predict SM observables?
Percent relative uncertainty, PQ:

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)



How well can we predict SM observables?
Percent relative uncertainty, PQ:

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)



How well can we predict SM observables?
Percent relative uncertainty, PQ:

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)



SM vs. New Physics? Uncertainties in BRs

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)

_



SM vs. New Physics? Uncertainties in BRs

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)

_



SM vs. New Physics? Uncertainties in BRs

() => if the Higgs mass uncertainty were 0.1 GeV (instead of 0.4 GeV)

Thus,  without reducing this error, any
new physics contribution to the bb

branching fraction that is not at least a factor of three or 
four larger than 1% cannot be discerned from SM. Thus, 
a deviation of at least 3% is required of detectable new 

physics. 

However, the lattice QCD calculation could improve it to 
match the experimental improvement  on time.
(arXiv:1404.0319v1, Lepege, Mechenzie, Peskin)

_



Summary I
❖ Higgs Precision can be reaching at the level of EWP 

❖ With improved theoretical tools (e.g. expansion 
formalism), SM will be tested at per mille level

❖ SM Higgs vs. BSM Higgs can be tested @ FCC (and ILC) 
beyond the typical direct search limit

❖ Recently a further study on low energy observables 
were done (see arXiv:1501.02803v1 by Petrov, Porkoski, 
Wells, Zhang)



Part II: Quantum Critical Higgs

❖ With the observation of a scalar with properties close to the SM Higgs, we are now confident 
that the interactions of the Higgs boson with gauge bosons and fermions are mainly dictated 
by its kinetic term and Yukawa coupling

❖ Higher-dimensional operators predict relations between the mass of a given particle and its 
coupling to the Higgs that deviate O(1) from the ones derived from the above Lagrangian.

❖ The observation at the LHC of Higgs couplings consistent with the above Lagrangian 
implies that such higher-dimensional operators must be treated as small perturbations.

❖ The situation is however different in what regards the last part of the SM Lagrangian, the 
Higgs potential,

B. Bellazzini, C. Csaki, J. Hubisz, S.L., J. Serra, J. Terning  
work in progress (to appear)

  μ ~88 GeV              λ ~0.13
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❖ defining c6 = 1/f2,  we find f ~ 600 GeV, so new physics 
effects from such scale might have escaped detection 
with Λ ~ 4πf 

❖ With this potential the VEV and mass of the Higgs are 
given by,
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This is just one simple example that shows 
that the form of the Higgs potential is 

completely undetermined
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Quantum Phase Transition

We are here
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characterized by the scaling dimensions of the field

If the system approaches a trivial fixed point then we find 
“mean-field” critical exponents associated with the 

Landau-Ginzburg effective theory: e.g. SM:

If the SM is correct up to the Planck scale, then
a change in 1 part in 1030 can push us through the phase 
transition, so we are very, very close to the critical point.

If there is new physics beyond the SM then the relevant 
questions are: Does the

underlying theory also have a QPT?”

and, “If so, is it more interesting than 
mean-field theory?"

e.g., if the system is in the domain of attraction of a non-trivial  
fixed point then we find non-trivial critical exponents.

We assume the field is not free field (assuming that the 
theory is close to an interacting fixed point), such that scaling 
dimension do not add up => our theory is not corresponding 

to generalized free fields theory
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Quantum Critical Higgs
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❖ This propagator can be reproduced by a 1PI effective action with the simplest 
possible scale invariant kinetic term:

❖ One can move the cut away from the origin by shifting the kinetic term by μ:

❖ This however gives a large contribution to the potential in the p ➔ 0 limit, 
removing all light degrees of freedom. A light pole can be reintroduced (while 
leaving the cut starting at μ by subtracting the mass term:

Higgs is mixing with the states of the 
conformal matter corresponding to the 

physics of the quantum phase transition

we are neglecting small SM couplings such as gauge 
couplings and Yukawas that represent an external 
deformation of the CFT: treat such deformations as 
small perturbations that are accounted by higher 

loops involving insertions of these small couplings.
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❖ The upshot is that there is a CFT (QPT), it has non-trivial dynamics that will 

have a non-trivial 4-point function H4 which will have momentum dependence

❖ We will parameterize the Higgs VEV as

The momentum space propagator for the physical Higgs scalar

Location of pole
(Higgs mass
of 125 GeV)

❖ the effective potential will be the p→0 limit of the momentum space 4-pt function

completely free parameter
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Quantum Critical Higgs: modified propagator

❖ Using Cauchy's integral theorem, the above propagator can be rewritten as a 
single pole plus a contribution of the continuum, corresponding to the usual 
spectral decomposition

❖ Rescaling field to go into a basis corresponding to canonical normalization

For the propagators of the 
Nambu-Goldstone 

bosons of EWSB (the
longitudinal polarization 

of the W and Z), also 
contain a pole, at zero 

momentum, and a 
continuum => set m=0~
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❖ e.g. for the trilinear interaction in momentum space:

similar to SCET!



Direct Signals
❖ Off-shell Higgs can be tested via interference.

H
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Direct Signals
❖ Single Higgs production: Production of the cut modifies Higgs cross sections for 

energies above μ  => modifies any cross sections that involve the (tree-level) 
exchange of the components of Higgs

we may learn there is a threshold
and a non-trivial dimension



Direct Signals
❖ Double Higgs production

gauge1 = box + triangle (negative interference)
gauge2 = box (largest contribution)
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expansion: unlikely that the dimensions 
differ from 1 very much) 

C3≠1 we can have an arbitrary potential ((or 
an arbitrary function of |H|^2)) if the 

coupling that controls the various terms is 
not small (presumably some CFT coupling)

These expansion can be trusted only for     
p < μ:

above ~μ, momentum dependent terms 
from CFT will appear 
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Direct Signals
❖ Double Higgs production

We don't know what the CFT is:
We want to learn as much as possible about it
The quatities {μ , Δ, C3} would be a good start

but if it turns out this is indeed the right direction
then one would need to study many more processes 

involving Higgs and momentum dependence
to see if the CFT can eventually be reconstructed



Summary II: Have we really discovered a SM-like Higgs boson?

❖ With improved theoretical tools, SM will be tested at per 
mille level.

❖ Meanwhile we are quite ignorant about the form of Higgs 
potential, or even kinetic term.

❖ It’s interesting whether the Higgs sector is close to a 
quantum critical point with non-mean-field behavior, that 
is with non-trivial critical exponents and scaling 
dimensions

❖ LHC and FCC will explore these questions!


