New long-lived particles at future circular colliders

Andy Haas *New York University*

Exploring the Physics Frontiers with Circular Colliders Aspen - Jan 30, 2015

https://indico.cern.ch/event/336571/

Introduction / Motivation

- New particles will either be
 - Prompt decays
 - Semi-stable, decay in detector
 - Detector-stable, decay outside the detector (or get stopped in the detector and decay later)
- Must ensure sensitivity to semi-stable and detector-stable cases!
- Very well-motivated
 - NLSP \rightarrow LSP with small Δm
 - AMSB Wino/Higgsino, etc.
 - Split / mini-split SUSY
 - mH=125 GeV \rightarrow 10-10⁴ TeV squarks
 - Off-shell gluino decay through heavy squarks → long lifetime!

Gluino Mass in TeV

Prompt Gluino Decays

2

Collider-Stable Gluinos

Scalar Mass in $Log_{10}\left(\frac{m_0}{T_0V}\right)$

Benchmark Scenarios

- 1) Colored (gluino, stop, sbottom, ...)
 - Pair-produced via strong-interaction or Drell-Yan
 - Hadronizes into "R-hadron"
 - Electrically charged or neutral at production
 - Charge exchange through nuclear interactions with detector material
 - "Generic, Regge, or Intermediate" benchmark R-hadron spectra / interaction models
- 2) Not colored, but electrically charged (stau, chargino, ...)
 - Pair-produced via Drell-Yan
 - Always charged, escapes the detector like a "heavy muon"

Stable R-hadron: Previous Searches

- LHC 8 TeV has best sensitivity so far...
- Look for **slow**, highly ionizing, high-pT track:
 - Become neutral in detector
 - Inner-track only (use dE/dx only)
 - Inner-track only + calorimeter timing
 - Start neutral, get charged in calorimeter
 - Muon-track only, muon timing
- m(stop/sbottom)>~800 GeV m(gluino)>~1200 GeV

ATLAS-CONF-2012-075 CMS PAS EXO-12-026

Stable R-hadron: Future Proton Collider Reach

- Luminosity doesn't buy much...
 - Cross-section falls fast!
 - $S/sqrt(B) \rightarrow sqrt(L)$
 - Gluino R-hadron:
 - 8 TeV 30/fb: 1.3 TeV
 - 8 TeV 300/fb: 1.5 TeV
 - 8 TeV 3000/fb: 1.7 TeV
- But CM energy is nice!
 - S and B both scale ~linearly
 - Gluino R-hadron:
 - 14 TeV 300/fb: 2.8 TeV
 - 14 TeV 3000/fb: 3.3 TeV
 - 33 TeV 3000/fb: ~7 TeV
 - 100 TeV 3000/fb: ~20 TeV
- Squark: ~2/3 of gluino reach

http://www.snowmass2013.org/tiki-index.php?page=EF+Facilities+List

Stable R-hadron: Future Lepton Collider Reach

- Look at LEP searches...
- Not as easy to make gluinos
 - Have to make quarks first!
 - Sensitive up to ~CM/4
- But can produce squarks via Drell-Yan up to ~CM/2

 $\begin{array}{l} \text{arXiv:hep-ex}/0303024 \\ \text{arXiv:hep-ex}/0305071 \end{array}$

 $m(gluino) > \sim 20 \text{ GeV}$

Heavy-muon: Previous Searches

- LHC 8 TeV has best sensitivity so far...
 - High-pT, isolated track
 - Measure *velocity* of track via
 - dE/dx (inverting Bethe-Block) (measured best in silicon)
 - Precise timing (measured in calorimeters and muon systems)
 - Background: mis-measured leptons
 - m(stau)>~340 GeV
- LEP was sensitive to long-lived charged particles up to ~CM/2

Heavy Muon: Future Collider Reach

Proton colliders:

- $S/sqrt(B) \rightarrow sqrt(L)$
- S and B both scale ~linearly with CM
- Heavy-muon reach:
 - 8 TeV 30/fb: 350 GeV
 - 8 TeV 300/fb: 425 GeV
 - 8 TeV 3000/fb: 500 GeV
 - 14 TeV 300/fb: 700 GeV
 - 14 TeV 3000/fb: ~1000 GeV
 - 33 TeV 3000/fb: ~2 TeV
 - 100 TeV 3000/fb: ~6 TeV

Lepton colliders:

- Heavy-muon reach ~CM/2:
 - ILC e⁺e⁻ 1 TeV: 500 GeV
 - Muon collider 4 TeV: 2 TeV

8

Detector-Stable Particles: Estimated Mass Reach

"Late" triggers

- Combine info from multiple bunch crossings in ATLAS Run2 trigger
 - Recall, bunch spacing will be just 25 ns in Run2 (was 50 ns)
- Heavy, slow (β <~0.5), charged long-lived particle
 - Too slow to reach muon trigger in bunch 1 (production crossing)
 - Reaches muon trigger in next bunch crossing
 - Would not fire muon trigger by itself
 - Combine with jet/MET in previous bunch crossing

Milli-charged Particles

- New dark sectors can have new particles which appear "milli-charged" to the SM
- Electric charge $\sim 10^{-3} \sim 10^{-1}$
- No direct constraints above 100 MeV

arXiv:1410.6816 [hep-ph]

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \\ &+ i \bar{\psi} \left(\partial \!\!\!/ + i e' A' - i \kappa e' B \!\!\!/ + i M_{\mathrm{mCP}} \right) \psi \end{split}$$

- A new LHC experiment (mQ@LHC) could probe up to ~100 GeV
 - Scintillator coincidence "telescope" sensitive to single photo-electrons

Milli-charged Particles

 New dark sectors can have new particles which appear "milli-charged" to the SM

Future 100 TeV reach about 5x lower in charge

- Electric charge $\sim 10^{-3} \sim 10^{-1}$
- No direct constraints above 100 MeV

arXiv:1410.6816 [hep-ph]

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \\ &+ i \bar{\psi} \left(\partial \!\!\!/ + i e' A' - i \kappa e' B + i M_{\mathrm{mCP}} \right) \psi \end{split}$$

Semi-stable R-hadron Decays

- What if gluino (R-hadron) is just a little long-lived (~1 ns)?
 - Displaced jets (+MET) from R-hadron decays in the detector

- Standard jets+MET search should still apply (up to what lifetime?)
 - Leptons vetos may start to fail impact-parameter cuts (when?)
 - Jets will start to be identified as b-jets (when?)
 - Jets may fail cleaning cuts, e.g. track pT fraction, EM fraction (when?)

Prompt search reinterpretations

- First explicit limits on gluinos with intermediate lifetimes from reinterpretation of prompt SUSY searches
 - 7-10 jets and 0,1,2 b-jets and MET
 - 2-6 jets and MET
 - 3 b-jet and SS/3L searches also considered but don't add sensitivity
- Generated fullly-simulated MC of decaying Rhadrons at ATLAS

Prompt search reinterpretations

• Limits on gluino mass vs. lifetime

ATLAS-CONF-2014-037

- Also scan neutralino mass
- Gluino with lifetime of 1 ns excluded up to ~900 GeV, for $m(x_1^0)=100$ GeV

Displaced vertex searches

- For moderate lifetimes, ~1 1000 ns, can reconstruct the **displaced vertex in the tracker**
- Current ATLAS analysis requires a *high-pt muon* to trigger on and reduce backgrounds... sensitive to gluino → ttbar decays
 - Adding analysis based on jet and MET triggers, for $g \rightarrow qq + x_1^0$ decays

Displaced vertex searches

ATLAS-CONF-2013-092

- Background from hadronic interactions with material (or air!)
 - Find where material is (from data) and reject the regions

Displaced vertex searches

- Require vertex to have at least 5 tracks and (visible) mass >10 GeV
- Total background expected: 0.02 events
- Observed in signal region: 0 events

ATLAS-CONF-2013-092

• Sensitive to ~1–1.4 TeV gluino \rightarrow tt+ x_1^0 for ct ~1-1000 ns

(Far-)Future of Displaced Vertex Searches

- Direct search for displaced vertices is more sensitive than relying on jets and MET (prompt reinterpretations), for lifetimes > ~1 mm
- "Detector-stable" searches more sensitive for lifetimes > ~300 mm
- Must ensure future detectors can still reconstruct tracks starting
 ~100 mm from the beamspot with impact parameters up to ~50 mm
- Must ensure there are still sufficient air-gaps (or vacuum?) between inner detector tracker material
- Assuming detectors perform well, sensitivity is limited only by production cross-section, reach is similar to detector-stable case:

Out-of-time Decays (Stopped R-hadrons)

- Can also detect decay of R-hadron that has *stopped* in the calorimeter
- D0, ATLAS, CMS have searched...
- Limits usually slightly weaker than dE/dx + timing searches for escaping R-hadrons (assuming it's often charged in the tracker)
- But offers possibility to study the R-hadron decay
- Should ensure this remains possible at future collider detectors
 - Need abort gap without collisions
 - Need good calorimeter timing and shower-shape discrimination
 - Need efficient muon vetos for cosmics and beam-halo

Semi-stable Charged Particle Decays

- Chargino becomes long-lived when nearly-degenerate with the LSP
- Kinked-tracks from chargino → neutralino (and soft pion/lepton)
- Light Wino and Bino, heavy Higgsinos, Wino LSP
 - Lifetime ~50 mm, Δm~165 MeV from EW contribution
- Higgsino LSP, only light Higgsinos
 - Lifetime ~5 mm, $\Delta m = \frac{1}{2} \alpha m_z = ~355 \text{ MeV}$

$$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + \text{jet} , pp \to \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} + \text{jet}$$

Need pT>90 GeV ISR for MET trigger: ~15% of cross-section

Semi-stable Charged Particle Decays

arXiv:1310.3675

- Chargino travels through some layers then decays to a soft pion (not reconstructed) + MET
- Look for high-pt isolated track with few hits in outer tracking layer
 - Track needs at least 3 inner pixel hits and 1 silicon strip hit
 - Require <5 outer-tracker (TRT) hits

Semi-stable Charged Particle Decays

- Background track pT shapes fit to data
 - No excess seen at high pT
- Exclude chargino <270 GeV in AMSB with Δm~165 MeV

Improved Disappearing Track Search

- Eventual sensitivity with 14 TeV and same short-track analysis ~500 GeV for Δm ~165 MeV
- Going to need even shorter tracks to reach the ~5 mm lifetime case...

Improved Disappearing Track Search

- Eventual sensitivity with 14 TeV and same short-track analysis ~500 GeV for Δm~165 MeV
- Going to need even shorter tracks to reach the ~5 mm lifetime case
 - Insertable B-Layer (IBL) added
 - Could have ~150 mm tracks using just 4 pixel hits?!

Sensitive up to ~800 GeV for 50 mm and ~250 GeV for 5 mm lifetime using 4-pixel IBL tracks?

New IBL pixel layer at radius of ~26mm

(Far-)Future of Disappearing Track Searches

- Reconstructing very short tracks (with good momentum resolution!) is essential for mass reach
- 15 cm tracks seem possible at ATLAS
- If we could reconstruct 10 cm tracks at a 100 TeV detector:
 - Wino sensitivity from $3.5 \rightarrow 4.5 \text{ TeV}$
 - Higgsino from $\sim 600 \text{ GeV} \rightarrow 1 \text{ TeV} !$
- Short tracks should perhaps be a design goal of future detectors (and accelerators?)

Conclusions

- Semi-stable and detector-stable particles are highly-motivated targets for beyond-SM discoveries at future (or current!) colliders
- Discussed several important searches skipped many... (displaced photons, leptons, light resonances, etc.)
- Distinct signatures and low backgrounds sensitivity often up to kinematic limits of production rate
 - Long-lived gluino mass reach ~7x greater at 100 TeV than 14 TeV
- Must ensure detectors (and accelerators) continue to allow good triggering on and reconstruction of:
 - escaping, slow, and stopping charged (and milli-charged?) particles
 - displaced tracks (and vertices in air/vacuum gaps)
 - very short tracks (with good momentum resolution)
- And of course we must build future accelerators and detectors!!!