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Introduction / Motivation     

● New particles will either be
– Prompt decays

– Semi-stable, decay in detector

– Detector-stable, decay outside the detector
(or get stopped in the detector and decay later)

● Must ensure sensitivity 
to semi-stable and
detector-stable cases!

● Very well-motivated
– NLSP → LSP with small Δm

● AMSB Wino/Higgsino, etc.

– Split / mini-split SUSY

● mH=125 GeV → 10-104 TeV squarks
● Off-shell gluino decay through heavy squarks → long lifetime!
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Benchmark Scenarios

● 1) Colored (gluino, stop, sbottom, ...)
– Pair-produced via strong-interaction or Drell-Yan

– Hadronizes into “R-hadron”

– Electrically charged or neutral at production

– Charge exchange through nuclear interactions 
with detector material

– “Generic, Regge, or Intermediate” benchmark 
R-hadron spectra / interaction models

● 2) Not colored, but electrically charged (stau, 
chargino, …)

– Pair-produced via Drell-Yan

– Always charged, escapes the detector like a 
“heavy muon”
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Stable R-hadron: Previous Searches

● LHC 8 TeV has best sensitivity so far...
● Look for slow, highly ionizing, high-pT track:

– Become neutral in detector

● Inner-track only (use dE/dx only)
● Inner-track only + calorimeter timing

– Start neutral, get charged in calorimeter

● Muon-track only, muon timing 

● m(stop/sbottom)>~800 GeV
m(gluino)>~1200 GeV

ATLAS-CONF-2012-075
CMS PAS EXO-12-026
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Stable R-hadron: Future Proton Collider Reach

● Luminosity doesn't buy much...
– Cross-section falls fast!

– S/sqrt(B) → sqrt(L)

– Gluino R-hadron:

● 8 TeV 30/fb: 1.3 TeV
● 8 TeV 300/fb: 1.5 TeV
● 8 TeV 3000/fb: 1.7 TeV

● But CM energy is nice!
– S and B both scale ~linearly

– Gluino R-hadron:

● 14 TeV 300/fb: 2.8 TeV
● 14 TeV 3000/fb: 3.3 TeV
● 33 TeV 3000/fb: ~7 TeV
● 100 TeV 3000/fb: ~20 TeV

● Squark: ~2/3 of gluino reach

300/fb

3000/fb

http://www.snowmass2013.org/tiki-index.php?page=EF+Facilities+List

http://www.snowmass2013.org/tiki-index.php?page=EF+Facilities+List
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Stable R-hadron: Future Lepton Collider Reach

● Look at LEP searches...

● Not as easy to make gluinos
– Have to make quarks first!

– Sensitive up to ~CM/4

● But can produce squarks
via Drell-Yan up to ~CM/2

m(gluino)>~20 GeV

m(squark)>~90 GeV

arXiv:hep-ex/0303024
arXiv:hep-ex/0305071
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Heavy-muon: Previous Searches
● LHC 8 TeV has best sensitivity so far...

– High-pT, isolated track

– Measure velocity of track via

● dE/dx (inverting Bethe-Block)
(measured best in silicon)

● Precise timing
(measured in calorimeters and
 muon systems)

– Background: mis-measured leptons

– m(stau)>~340 GeV

● LEP was sensitive to
long-lived charged 
particles up to ~CM/2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-058/
http://lepsusy.web.cern.ch/lepsusy/www/gmsb_summer02/lepgmsb.html

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-058/
http://lepsusy.web.cern.ch/lepsusy/www/gmsb_summer02/lepgmsb.html


8Andy Haas

Heavy Muon: Future Collider Reach

● Proton colliders:
– S/sqrt(B) → sqrt(L)

– S and B both scale ~linearly with CM

– Heavy-muon reach:

● 8 TeV 30/fb: 350 GeV
● 8 TeV 300/fb: 425 GeV
● 8 TeV 3000/fb: 500 GeV
● 14 TeV 300/fb: 700 GeV
● 14 TeV 3000/fb: ~1000 GeV
● 33 TeV 3000/fb: ~2 TeV
● 100 TeV 3000/fb: ~6 TeV

● Lepton colliders:
– Heavy-muon reach ~CM/2:

● ILC e+e- 1 TeV: 500 GeV
● Muon collider 4 TeV: 2 TeV

300/fb

3000/fb
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Detector-Stable Particles: Estimated Mass Reach

                        Mass (GeV)

Gluino

Stop / 
Sbottom

Stau / 
Chargino

LHC 14 3000/fb
LHC 33 3000/fb

ILC 1

Muon 4 TeV

LHC 8 30/fb

1000 2000

LHC 14 3000/fb
LHC 33 3000/fb

ILC 1 TeV

Muon 4 TeV

LHC 8 30/fb

LHC 14 3000
LHC 33 3000/fb

ILC 1 TeV

Muon 4 TeV

LHC 8

1.3 TeV

3.3 TeV

3000

~7 TeV

250 GeV

1 TeV

850 GeV

2.2 TeV

~4.5 TeV

500 GeV

2 TeV

500 GeV

2 TeV

350 GeV

1000 GeV

~2 TeV

VLHC 100 3000/fb ~13 TeV

VLHC 100 3000/fb ~20 TeV

VLHC 100 3000/fb ~6 TeV
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“Late” triggers

● Combine info from multiple bunch crossings in ATLAS Run2 trigger
– Recall, bunch spacing will be just 25 ns in Run2 (was 50 ns)

● Heavy, slow (β<~0.5), charged long-lived particle
– Too slow to reach muon trigger in bunch 1 (production crossing)

– Reaches muon trigger in next bunch crossing

– Would not fire muon trigger by itself

– Combine with jet/MET in previous bunch crossing

25 ns

Read-out
this one
as main
event

Could be an
important 
technique
if bunch 
spacing gets
shorter... 5 ns ?
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Milli-charged Particles

● New dark sectors can have new particles
which appear “milli-charged” to the SM

● Electric charge ~10-3 – ~10-1

● No direct constraints above 100 MeV
● A new LHC experiment (mQ@LHC) could probe up to ~100 GeV 

– Scintillator coincidence “telescope” sensitive to single photo-electrons

arXiv:1410.6816 [hep-ph]
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Milli-charged Particles

● New dark sectors can have new particles
which appear “milli-charged” to the SM

● Electric charge ~10-3 – ~10-1

● No direct constraints above 100 MeV
● Future 100 TeV reach about 5x lower in charge 

and out to ~500 GeV mass

arXiv:1410.6816 [hep-ph]
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Semi-stable R-hadron Decays

● What if gluino (R-hadron) is just a little long-lived (~1 ns)?
– Displaced jets (+MET) from R-hadron decays in the detector

● Standard jets+MET search should still apply (up to what lifetime?)
– Leptons vetos may start to fail impact-parameter cuts (when?)

– Jets will start to be identified as b-jets (when?)

– Jets may fail cleaning cuts, e.g. track pT fraction, EM fraction (when?)

20 cm

Pixels

Silicon
strips



14Andy Haas

Prompt search reinterpretations

● First explicit limits on gluinos with intermediate lifetimes from 
reinterpretation of prompt SUSY searches

– 7-10 jets and 0,1,2 b-jets and MET

– 2-6 jets and MET

– 3 b-jet and SS/3L searches also considered but don't add sensitivity

● Generated fullly-simulated MC of decaying Rhadrons at ATLAS
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Prompt search reinterpretations

● Limits on gluino mass vs. lifetime
– Also scan neutralino mass

● Gluino with lifetime of 1 ns excluded up to ~900 GeV, for m(χ1
0)=100 GeV

ATLAS-CONF-2014-037 

~g→qqX/gX ~g→ttX
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Displaced vertex searches

● For moderate lifetimes, ~1 – 1000 ns, can reconstruct the 
displaced vertex in the tracker

● Current ATLAS analysis requires a high-pt muon to trigger on and 
reduce backgrounds... sensitive to gluino → ttbar decays

– Adding analysis based on jet and MET triggers, for g → qq+x
1

0 decays

20 cm

Pixels

Silicon
strips
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Displaced vertex searches

● Background from hadronic interactions with material (or air!)
– Find where material is (from data) and reject the regions

ATLAS-CONF-2013-092

3-track vertices
with low mass

– Also background from random 
track crossings / pileup
(no air in the beampipe)

 Beampipe 

 Pixel layer 1 

 Pixel layer 2 

 Pixel layer 3 
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Displaced vertex searches

● Require vertex to have at least 5 tracks
 and (visible) mass >10 GeV

● Total background expected: 0.02 events
● Observed in signal region: 0 events

● Sensitive to ~1–1.4 TeV gluino→tt+x
1

0 for cτ ~1-1000 ns

RPV squark 
model

1 TeV gluino → ttbar

Neutralino
mass varies

ATLAS-CONF-2013-092
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(Far-)Future of Displaced Vertex Searches

● Direct search for displaced vertices is more sensitive than relying 
on jets and MET (prompt reinterpretations), for lifetimes > ~1 mm

● “Detector-stable” searches more sensitive for lifetimes > ~300 mm

● Must ensure future detectors can still reconstruct tracks starting 
~100 mm from the beamspot with impact parameters up to ~50 mm

● Must ensure there are still sufficient air-gaps (or vacuum?) between 
inner detector tracker material

● Assuming detectors perform well, sensitivity is limited only by 
production cross-section, reach is similar to detector-stable case:

Gluino

LHC 14 3000/fb
LHC 33 3000/fb

ILC 1

Muon 4 TeV

LHC 8 30/fb 1.3 TeV

3.3 TeV

~7 TeV

250 GeV

1 TeV

~20 TeVVLHC 100 3000/fb
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Out-of-time Decays (Stopped R-hadrons)

● Can also detect decay of R-hadron 
that has stopped in the calorimeter

● D0, ATLAS, CMS have searched...
● Limits usually slightly weaker than 

dE/dx + timing searches for 
escaping R-hadrons 
(assuming it's often charged in the tracker)

● But offers possibility to 
study the R-hadron decay

● Should ensure this remains 
possible at future collider detectors

– Need abort gap without collisions

– Need good calorimeter timing and 
shower-shape discrimination

– Need efficient muon vetos for 
cosmics and beam-halo

arXiv:1310.6584
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Semi-stable Charged Particle Decays

● Chargino becomes long-lived when nearly-degenerate with the LSP
● Kinked-tracks from chargino → neutralino (and soft pion/lepton)

● Light Wino and Bino, heavy Higgsinos, Wino LSP
– Lifetime ~50 mm, Δm~165 MeV from EW contribution

● Higgsino LSP, only light Higgsinos
– Lifetime ~5 mm, Δm= ½ α m

Z
 = ~355 MeV

Need pT>90 GeV ISR
for MET trigger:
~15% of cross-section
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Semi-stable Charged Particle Decays

● Chargino travels through some layers
 then decays to a soft pion (not reconstructed) + MET

● Look for high-pt isolated track with few hits in outer tracking layer
– Track needs at least 3 inner pixel hits and 1 silicon strip hit

– Require <5 outer-tracker (TRT) hits

arXiv:1310.3675

Outer
tracker

Silicon 
hit
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Semi-stable Charged Particle Decays

● Background track pT shapes fit to data
– No excess seen at high pT 

● Exclude chargino <270 GeV in AMSB with Δm~165 MeV

L
o
n

g
e
r life

tim
e

Escapes detector
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Improved Disappearing Track Search

● Eventual sensitivity with 14 TeV
and same short-track analysis
~500 GeV for Δm~165 MeV

● Going to need even shorter tracks
to reach the ~5 mm lifetime case...

0.02ns, ~355 MeV, 5 mm

~165 MeV, 50mm
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Improved Disappearing Track Search

● Eventual sensitivity with 14 TeV
and same short-track analysis
~500 GeV for Δm~165 MeV

● Going to need even shorter tracks
to reach the ~5 mm lifetime case

– Insertable B-Layer (IBL) added

– Could have ~150 mm tracks
using just 4 pixel hits?!

0.02ns, ~355 MeV, 5 mm

~165 MeV, 50mm

New IBL pixel layer at radius of ~26mm

Sensitive up to ~800 GeV for 50 mm
and ~250 GeV for 5 mm lifetime
using 4-pixel IBL tracks?
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(Far-)Future of Disappearing Track Searches

● Reconstructing very short tracks
(with good momentum resolution!)
is essential for mass reach

● 15 cm tracks seem possible at ATLAS

● If we could reconstruct 10 cm tracks 
at a 100 TeV detector:

– Wino sensitivity from 3.5 → 4.5 TeV

– Higgsino from ~600 GeV → 1 TeV !

● Short tracks should perhaps be a 
design goal of future detectors
(and accelerators?)

M. Low and L.T. Wang
arXiv: 1404.0682
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Conclusions

● Semi-stable and detector-stable particles are highly-motivated 
targets for beyond-SM discoveries at future (or current!) colliders

● Discussed several important searches – skipped many... 
(displaced photons, leptons, light resonances, etc.)

● Distinct signatures and low backgrounds – sensitivity often up to 
kinematic limits of production rate

– Long-lived gluino mass reach ~7x greater at 100 TeV than 14 TeV

● Must ensure detectors (and accelerators) continue to allow good 
triggering on and reconstruction of:

– escaping, slow, and stopping charged (and milli-charged?) particles

– displaced tracks (and vertices in air/vacuum gaps)

– very short tracks (with good momentum resolution)

● And of course we must build future accelerators and detectors!!!
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