Calorimetry/Detectors $\eta > 2.5, 100$ TeV pp Colliders

David R Winn* Fairfield University

+ contributions from collaborators from CMS*

Exploring the Physics Frontier With Circular Colliders"

*Disclaimer: Not a CMS talk, but approved by CMS HCal.

Surprises at 100 TeV?

• What was **your** last *surprise* in HEP?

- c, b, t, W, Z, H all "predicted". Only the masses not known with any precision.
- v-oscillations? "Predicted" 1957, 1968 homestake 1/3 solar rate....
- τ was a surprise.
- Dark Energy:"surprise, surprise" (ok, not HEP per se, as of yet).
- We expected SuSY...Is its absence our surprise???
- The only Orthodoxy is Facts" –JJ Sakurai

But "Be Prepared" = Cautious Optimism!

- Examples now of what we did not have c.1995. yet ~20 years before FCC designs:
 - 10 nm lithography (and scaling down)
 - Submicron through-wafer via's (full 3D electronics) + low K dielectrics (Si on Air)
 - Graphene
 - Carbon fiber, other high strength/weight ratio adaptable technologies
 - ALD + stochiometric engineered materials (20 psec large area MCP)
 - III-V [100] wafers in large sizes + Practical synthetic diamond wafers
 - Thin film flexible wafer substrates and
 - Water-clear Silica aerogels (n~1.1)/Cerenkov compensation
 - Nanofabrication/replication/indenting techniques; nanomaterials
 - 3D printing
 - Robotics
 - Photonic band-gap engineering
 - Quantum Computing!?? But add our new simulation tools (EE,ME, Detectors etc)
 - SiPM + ALD-based MCP
 - Low cost, low noise, 20 GHz waveform chips
 - Particle Flow/High Granularity/Cerenkov- β compensated Calorimetry
 - Nb₃Sn, HTS for detector magnets
 - SO..... in 2030-2035???

Yet 5x10³⁵,100 TeV; η≥2.5 => STILL Very Bad Bongoes!

- Radiation Damage >20 GRad (3k fB⁻¹)
- Pileup > 300-500
- 1 TeV p_T parton jet size at ~10 m ~1+ cm
 - Separation between key partons/jets is often of the same or smaller size as the jets themselves – w/o pileup...
 - Compare properties of Cu, W, PbWO3: Xo, Lint, RMoliere
- Calorimeter: 10 TeV jet 98% containment ~15 λ !
- Not enough solenoid bending
 - Forward µ:Need dipole or toroid
- Detector Mass: >x10 CMS/ATLAS
 - Mechanical engineering
 - Beam pipe

Desired Properties η>2.5

Needed:

- η coverage to ≥6!
- Transverse/longitudinal segmentation for isolated γ , e, μ (H-> $\mu\mu$) ID - Particle flow? Enough granularity to detect and remove overlap
- Jet ID from W, Z, t, b, τ , H decays in the presence of pileup -> Larger radii from IP
 - -> Transverse segmentation >3-4 times smaller than jet cone (PF)
- e-m Energy Resolution for H->γγ (ex:triple Higgs coupling) matching or exceeding present LHC detectors->Cerenkov Compensation
- Jet $\sigma_{\rm E}/{\rm E}{\sim}15\%/{\rm \sqrt{E}}$ + 1% -> to reliably reconstruct/separate W,Z's by jetjet
- $\eta \ge 2.5$ Muons: Integrated muon/calo system toroids or dipoles with the calorimetry; use dE/dx multiple sampling to confirm muon ID and TRD for $|\mathbf{p}|$

Forward muon toroid and calorimeter – muon system consisting of 0.5–1 Lint superferric HTC tape muon toroids interspersed with: pixel detectors, dE/dx calorimeter pads and TRD (straw tubes). Z: $6 \le \eta \le 4.5$ compartment ~ 20m. Thickness ($\frac{1}{2}$ iron $\frac{1}{2}$ detectors/coils) ~16m Extreme: toroid 20m in depth, Al absorbers inside

High Raddam Calorimetry

- Secondary Emission
- Exceptionally radiation resistant solid scintillators and Cerenkov Glasses
- Noble Liquid Scintillation
- Replaceable organic Liquid Scintillators
- High Bandgap Semiconductors:
 - Ga_xAs_{1-x}, InGaP, Diamond, Graphene,
- Integration with muon system at highest $\boldsymbol{\eta}$
- Enable: *Tile "Cerenkov" Compensation/Particle Flow*

Secondary Emission

- 0.1-10 ps timescales
- Metal oxides: Al₂O₃, TiO₂, MgO, BeO...
- Exceptional radiation resistance
 - 10²¹ mip/cm² CERN beam monitors
 - Many GRad electron bombardment in high current PMT
- SE yield vs incident particle energy follows dE/dx. Max yields C[100] or GaP~ 100 @2kV (3 stages ~ 10⁶)

SE Yield/Semi-empirical Sternglass formula: the universal curve of SE emission: SE yield normalized to maximum yield vs particle energy normalized to the energy of max yield.

Sensitivity of SEM detector

Mesh Dynode PMT's for Test

SE Calorimetry Projections

MC: monotonous(quasi-homogeneous/*no absorber*) 10 µm W mesh, 30% open; 10µm spacing. (Xo~1mm); SE yield max 3 @ 100V. 100 events, 100 GeV electrons; Histogram of collected charge in SEe (10⁵ electrons); Excellent Linearity 1–20 GeV. *RMS/E at 100 GeV = 0.0022* -> Stochastic $\sigma_{\rm F}/E \leq 2.2\%/\sqrt{E}$

High Yield SE materials B-doped diamond film on Si

SE Calorimetry Issues

Fast Timing: A Rule of Thumb: $\geq 10\%$ of risetime RT compact mesh ~ 0.1ns -> 10-20 ps *RT MCP* with 60:1 L/d ~50 ps -> 5-10 ps

MCP Breakthrus: Rad-hard and long life: ALD binary thin metal controlled resistance film followed by metal oxide ALD – on rad-hard substrate like quartz. Very low change of gain vs total charge drawn/area. Caution about thermal effects – the wall is like a resistor chain – and rate effects.

B-field Operation:

Best Measured Gain Mesh: 10% of Max at 45° at 2T. MCP: - 2.5-3 T

Construction Issues (Compare to PMT):

- operable vacuum: 1000x worse than PMT ok
- Assy T: ~1000°C vs PMT<300°C (photocathode)
 i.e. brazing, metal ceramic forming, etc ok.
- Assembly: Assembly in air PMT req. full vac.
- no glass-metal seals for window required.
- Transverse granularity: ~mm ok (η ~6!)
- Using ~1/3 mm thick MCP and diamond web compact high gain SE calorimeter sensors....

Separate the three functions:

- 1. Hard glass microcapillary array substrate provides pores,
- 2. Tuned Resistive Layer (ALD) provides current for electric field,
- 3. Specific Emitting (ALD) layer provides SEE,

5"x7"MCP: 6µm pores, 0.36mm thick

Expanded area view showing the multifiber edge effects.

Simple SE Calorimeter Module Point Design

Incident Electron Energy (eV)

Optical Materials - radhard/fast

- Fluorophosphate glasses: Samples & fiber (buffer scraped off for clarity) post 1.2 GRad γ + 8x10²⁰ n/cm² Irradiation. Trans per cm, 200–1000 nm, before/after irrad. Glass compositions: Ba–,Bi–, Ge–fluorophosphates: alkali–free, w/ transition metals, rare earths up to 20 wt% (wide glass–former domain). ρ ~4.2–4.5 g/cc. Radiation resistance: large r molecule; fluorine electronegativity. Ce–doped Scintillator: Fast fluorescent glass.

- Silica Aerogels: $n \ge 1.1$; TeflonAF n = 1.3 -Cerenkov compensation!

Sodium-Lithium- polyTungstates, (metaTungstates): 3(Na/Li)2WO₄9WO₃•H₂O [Na₆/Li₆[H₂W₁₂O₄₀] form clear, stable, non-toxic aqueous or alcohol solns, ρ≤3.1 (mineral sep. -50lb bags). Li forms slightly denser, clearer fluid. Calculated ρ=3: Xo~0.9 cm; R_M~2cm. A quartz cell ~2.2x2.2x25cm: fast Cerenkov E-M tower. Meta-Tungstates in~40% ETOH/60% benzyl Alc/5g/l PPO/0.2g/l POPOP->yield~20% toluene LS->replaceable "xtal"scintillator

Fairfield

Rad-Hard High NA Fibers

MEMS "air clad" 40 µm core, glass

Nanoporous Alumina film ~40nm pores ~6µm deep 65%-70% air. N~1.1 NA ~ 0.9 -> 3x-4x light Alumina -> accelerator magnet insulators.

Cladding on analog transmission fibers; rad-hard scintillator/WLS fibers:

Rad-Hard Scintillating and WLS Fibers:

- Basic Idea: Use existing-technology flexible quartz capillaries, cladded with fluorided quartz and clear buffer
- Fill capillary with pure rad-resistant WLS/Scintillator materials, as molten, flow thru CVD, sol-gels, or ALD. Harden to inner film on wall, or full core.
 - Molten at temperature with capillary imbibition
 - Solvent-Conveyed + vacuum/thermal dried

Largest Q-Capillary *w/UV-clear buffer:* 100µm core, 360µm OD HE plastic WLS fiber Core~500µm

Adapt Anthracene Core Quartz Capillary Scintillating Fiber Molten Imbibition Techniques to WLS Materials In Q-Capillaries with Clear Buffer

NA = 0.43

Core Diameters: 250-750 µm

25 cm Anthracene Core Quartz **Capillary** Fibers

-30cm tube furnace for 25cm Capillary fibers

Vacuum thermometer

- Pyrex vacuum burette

-Fibers placed vertically In 5 mm dia pyrex melt tube

- At ~240° C, µ<0; L Anthracene fountains from tops of fibers!

> Nested pyrex tube double boiler -Molten anthracene shown

Typical pulse in 80GeV e' beam

Add: • Solvent-Conveyed WLS (Toluene et al. + vacuum dry)

Typical Observed Pulse:

~ 8-9 p.e.

Expected Anthracene Fiber Pulse:

x 2% transmission x 20% QE ~ 8 p.e.

~200 KeV/mm x 0.25mm x 40 photons/KeV

Fast Rad-Hard Scintillators

Scintillators: Films in/on Quartz Tiles, Capillaries, Cores				
	CsI	ZnO:Ga	CeBr ₃	Stilbene
Light: y/MeV	2000	30,000	58,000	8,400
Decay (ns)	2(22%),16(78%)	<1	17	4.5
Tmelt (°C)	621	1980	722	124
dE/dx MeV/cm	5.6	5.1	6.7	2.1
Peak λ (nm)	310 + 420	375	371	410
Index n	1.9	1.85	1.91	1.6

Near UV/Blue->Green WLS Materials

• $3HF - T_{melt} \sim 170^{\circ}C, n = 1.68, < 10ns$

• Large Stokes Shift(~180nm) – low self absorption

• *Rad Resistant (100 MRad)* [A.Bross & A.Pla-Dalmau, Radiation effects in intrinsic 3HF scintillator NIM A, v.327, 337 (1993)]

• *Matches pTP:Anth, PET, ZnO:Ga, or plastic scint 1 UV->near UV fluor* 3HF ZnO:Zn

Fairfield

HE Scintillator Grooved Finger ~1"x5"

WLS "fibers"

Deep UV Lamp

🗧 PMT insert

MIPs after 2m clear coupling: Ratios: Integral3HF ~ 31% Y11 *Means*: 3HF ~ 50% Y11 *MPVs:* 3HF ~ 50% Y11 Core Area of 2 3HF fibers/Y11 = 25% Core Volume 3HF/Y11 = 4%

Fairfield

UNIVERSITY

An Amusing Physics Process at pp 100 TeV Can we do it?

- $\tau->\mu\gamma,$ ey, $\mu\mu\mu$ present limits < few x 10^{-8} .
- At FCC, scaling from CMS, expect ~ 10^{11-12} identified τ from Z-> $\tau\tau$ or W-> $\tau\mu$.
- Some expect the lepton flavor BR to scale as m^2 or more, compared to μ ->e γ
- Can we set a better limit? Would it be competitive in informing as observing μ->eγ or μ-e conversion?