Stripline Beam Position Monitor Development for the CLIC Drive Beam

(i)

Alfonso Benot Morell BE-BI
IFIClopp.jILAC
BI Day 2014, October $16^{\text {th }}$, Archamps

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype
6. Conclusions and future work

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype

6 . Conclusions and future work

1 - The CLIC Drive Beam

drive beam 100 A, 239 ns $2.38 \mathrm{GeV}-240 \mathrm{MeV}$

- CLIC: High energy $\mathrm{e}^{-} \mathrm{e}^{+}$linear collider (3 TeV)
- Linacs: $100 \mathrm{MV} / \mathrm{m}$ gradient at room temperature.
- RF power for Main Beam acceleration obtained from high-current Drive Beam deceleration at the Power Extraction and Transfer Structures (PETS)

CLIC DB BPM Requirements

- Close proximity to PETS
- 130 MW of RF power at 12 GHz propagating along the Drive Beam pipe ($f c_{T E I I}=7.64 \mathrm{GHz}$).
- Need to measure mW beam signals in proximity of MW RF pulses.
- Suppression of 12 GHz PETS interference needed.
- Simple and economic design imposed by number of units and available installation space (<150 mm).
- Tight resolution and accuracy requirements.

BPM Requirements	
N° BPMs	41580
Beam current	100 A
Bunch frequency	12 GHz
Bunch length	10 ps
Train length	242 ns
Aperture	23 mm
Spatial resolution	$2 \mu \mathrm{~m}$
Time resolution	10 ns
Accuracy	$20 \mu \mathrm{~m}$

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype

6 . Conclusions and future work

2 - Stripline BPM basics

- 130 MW PETS RF interference at 12 GHz needs to be suppressed.
- BPM technology with a suitable frequency response.
- Two possible versions of stripline BPM:
- Compact: downstream short-circuited electrodes, simple, low cost.
- Terminated: 8-port, increased tunability, loop-through calibration possible.

Time
$z(t)=\frac{Z_{c}}{2}\left[\delta(t)-\delta\left(t-\frac{2 \ell_{\text {strip }}}{c_{0}}\right)\right]$

$Z(\omega)=j Z_{c} e^{-j \frac{\omega \ell_{\text {strip }}}{c_{0}}} \sin \left(\frac{\omega \ell_{\text {strip }}}{c_{0}}\right)$
Z_{c} : beam to stripline coupling impedance

- If $\frac{2 l}{c_{0}}=N T_{\text {bunch }} \rightarrow$ Bunch cancellation
($N^{\text {th }}$ notch tuned to $f_{\text {bunch }}$)

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype

6 . Conclusions and future work

3 - Acquisition electronics

PSPICE Simulation

Measurement for centered beam

$>$ Position estimates as $\mathrm{x}=\mathrm{k} \Delta / \Sigma$, being k the linear calibration coefficient and Δ the difference, Σ the sum of opposite electrode signals.

Analog signal shaping required for correct acquisition of short and intense BPM electrode signals \rightarrow Integration / Low-Pass (LP) filtering before ADC.

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype

6 . Conclusions and future work

4 - Stripline BPM Compact Prototype

Longitudinal Wake Impedance

- Compact prototype ($/=25 \mathrm{~mm}$, tunes $2^{\text {nd }}$ notch).
- SiC ring added to damp peak of longitudinal wake impedance at 12 GHz .
- Distorsion of the transfer function \rightarrow No notch at 12 GHz !
- Geometrical issues $\left(\mathrm{TM}_{01}\right)$

Transfer function

Beam Tests at CTF3

- TBL, pos. 0860
- Evaluate the influence of 12 GHz PETS interference (130 MW)
- Beam steered $\pm 5 \mathrm{~mm}$ by moving QFR 0800.

- Reference BPMs: BPSs 0850 and 0910

Beam Tests at CTF3

- Two test scenarios: 6 MW and 60 MW PETS interference at 12 GHz

Parameer	6 MW PETS RF power (Beam current: 10 A)	60 MW PETS RF power (Beam current: 22 A)
$\begin{aligned} & \mathrm{l} \text { s. } \mathrm{se}) \end{aligned}$	72.4 ± 1.8	75.3 ± 0.6
	98.1 ± 1.7	94.2 ± 1.4
$\begin{gathered} \mathrm{mm} \text { of } \\ (0) \end{gathered}$	-1.76 ± 0.07	-1.91 ± 0.02
${ }_{(m m)}^{\text {(mitic }}$	0.24 ± 0.05	0.46 ± 0.04
(1)	250.42	92.73
	182.87	120.00

Beam Tests at CTF3

- Linearity/Sensitivity Test Results:
- Reduced vertical sensitivity compared to simulated value ($100 \mathrm{~m}^{-1}$).
- An offset (up to $\sim 190 \mu \mathrm{~m}$) appears for the plane not being swept. Further study is needed.
- Resolution Test :
- RMS value of 85 consecutive shots (upper bound):
- Stripline BPM: $9.5 \mu \mathrm{~m}(\mathrm{H})$ and $12.1 \mu \mathrm{~m}(\mathrm{~V}) \quad$ (for 100 A)
- BPS 0850: $\quad 14.1 \mu \mathrm{~m}(\mathrm{H})$ and $17.8 \mu \mathrm{~m}(\mathrm{~V})$ (for 100 A)
- BPS 0910: $\quad 16.1 \mu \mathrm{~m}(\mathrm{H})$ and $14.7 \mu \mathrm{~m}(\mathrm{~V})$ (for 100 A)

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype
6. Conclusions and future work

5- Stripline BPM terminated prototype

> First prototype provides insufficient suppression of the 12 GHz CLIC RF power signal.
> Longitudinal dimensions are very close to transverse ones (25 mm vs $23 \mathrm{~mm}) \rightarrow$ non-ideal transfer response (non TEM fields).
> New design intends to tune the third notch of the frequency response to $12 \mathrm{GHz} \rightarrow$ electrode length $l=37.5 \mathrm{~mm}$.
> Option of a loop-thru calibration via the downstream ports.

5- Stripline BPM terminated prototype

Parameter	Shorted BPM	Terminated BPM
Stripline length	25 mm	37.5 mm
Angular coverage	$12.5 \%\left(45^{\circ}\right)$	$5.55 \%\left(20^{\circ}\right)$
Electrode thickness	3.1 mm	1 mm
Outer radius	17 mm	13.54 mm
Ch. Impedance	37Ω	50Ω
Duct aperture	23 mm	23 mm
Resolution	$2 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$
Accuracy	$20 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$
Time Resolution	10 ns	10 ns

5- Stripline BPM terminated prototype

- Z_{C} extremely sensitive to electrode and feedthrough pin fabrication tolerances ($\Delta \mathrm{Z}_{\mathrm{C}}= \pm 3.5 \Omega / 0.1 \mathrm{~mm}$).
- Target range: $\mathrm{Z}_{\mathrm{C}}=50 \pm 1 \Omega$

Transfer Function Measurement

Transfer Function Measurement

- 45 dB -deep $3^{\text {rd }}$ notch, moves between 11.4-12 $\mathrm{GHz} \rightarrow$ Non-ideal HF measurement flange.

- Directivity: ~40dB up to $4 \mathrm{GHz} \rightarrow$ LHC (2530 dB)

Contents

1. The CLIC Drive Beam
2. Stripline BPM basics
3. Acquisition electronics
4. Compact prototype
5. Terminated prototype
6. Conclusions and future work

6- Conclusions and future work

- Compact prototype
- Insufficient suppression of 12 GHz PETS interference.
- Good linearity/sensitivity results with beam.
- Terminated prototype
- Improved suppression of 12 GHz PETS interference.
- Practical assembly aspects and cost to be optimized.
- Plans for 2014/2015
- TF measurement with alternative methods (bead pull)
- Beam test at CTF3 (CLIC Module) of terminated prototype (2 units)
- Study of alternative technologies (button, IPU,...)

Thank you

2 - Stripline BPM Basics

- Compact version (shorted electrodes)

Time

$$
z(t)=\frac{Z_{c}}{2}\left[\delta(t)-\delta\left(t-\frac{2 \ell_{\text {strip }}}{c_{0}}\right)\right]
$$

$Z(\omega)=j Z_{c} e^{-j \frac{\omega \ell_{\text {stip }}}{c_{0}}} \sin \left(\frac{\omega \ell_{\text {strip }}}{c_{0}}\right)$

- If $\frac{2 l}{c_{0}}=N T_{\text {bunch }} \rightarrow$ Bunch cancellation
($\boldsymbol{N}^{\text {th }}$ notch tuned to $f_{\text {bunch }}$)
- Terminated version (8 ports)

Passive filters for DB Stripline BPM

Geometrical issues in compact prototype

- Lobe distortion grows with electrode width.

- TF sensitive to resonance at $f_{T M-1}=9.99 \mathrm{GHz}$ if aperture and electrode length become comparable.

Beam tests at CTF3

