Stripline Beam Position Monitor Development for the CLIC Drive Beam

Alfonso Benot Morell BE-BI

Bl Day 2014, October 16th, Archamps

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

1 - The CLIC Drive Beam

- CLIC: High energy e⁻e⁺ linear collider (3 TeV)
- Linacs: 100 MV/m gradient at room temperature.
- RF power for Main Beam acceleration obtained from high-current Drive Beam deceleration at the Power Extraction and Transfer Structures (PETS)

CLIC DB BPM Requirements

- Close proximity to PETS
 - 130 MW of RF power at 12 GHz propagating along the Drive Beam pipe ($fc_{TFII} = 7.64$ GHz).
 - Need to measure mW beam signals in proximity of MW RF pulses.
 - Suppression of 12 GHz PETS interference needed.
- Simple and economic design imposed by number of units and available installation space (<150 mm).
- Tight resolution and accuracy requirements.

BPM Requirements		
N° BPMs	41580	
Beam current	100 A	
Bunch frequency	12 GHz	
Bunch length	10 ps	
Train length	242 ns	
Aperture	23 mm	
Spatial resolution	2 μm	
Time resolution	10 ns	
Accuracy	20 µm	

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

2 - Stripline BPM basics

- ▶ 130 MW PETS RF interference at 12 GHz needs to be suppressed.
 - BPM technology with a suitable frequency response.
- Two possible versions of stripline BPM:
 - <u>Compact</u>: downstream short-circuited electrodes, simple, low cost.
 - <u>Terminated</u>: 8-port, increased tunability, loop-through calibration possible.

$$Z(\omega) = j Z_c e^{-j\frac{\omega \ell_{\text{strip}}}{c_0}} \sin\left(\frac{\omega \ell_{\text{strip}}}{c_0}\right)$$

 Z_c : beam to stripline coupling impedance

 $If \frac{2l}{c_0} = NT_{bunch} \rightarrow Bunch cancellation$

(N^{th} notch tuned to f_{bunch})

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

3 - Acquisition electronics

Time (µs)

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

4 - Stripline BPM Compact Prototype

- Compact prototype (/=25 mm, tunes 2nd notch).
- SiC ring added to damp peak of longitudinal wake impedance at 12 GHz.
- Distorsion of the transfer function → No notch at 12 GHz!
- Geometrical issues (TM₀₁)

Longitudinal Wake Impedance

Transfer function

BI Day 2014, October 16th, Archamps

Beam Tests at CTF3

CB.MOV 0945

CB.MOV 0840

CB.MOV 0840

CB.MOV 0840

CB.MOV 0840

CB.MOV 0840

CB.MOV 0840

CB.MOV 0845

CB.MOV 0840

CB.MOV 0840

CB.MOV 0845

- ▶ TBL, pos. 0860
- Evaluate the influence of 12 GHz PETS interference (130 MW)
- Beam steered ±5 mm by moving QFR 0800.
- Reference BPMs: BPSs 0850 and 0910

Beam Tests at CTF3

Two test scenarios: 6 MW and 60 MW PETS interference at 12 GHz

$x_{H,V} = (S_{H,V}^{-1})\Delta/\Sigma + EOS_{H,V}$		
Parameter	6 MW PETS RF power (Beam current: 10 A)	60 MW PETS RF power (Beam current: 22 A)
V sensitivity S _V (m ⁻¹)	72.4±1.8	75.3±0.6
H sensitivity S _H (m ⁻¹)	98.1±1.7	94.2±1.4
V offset EOS _V (mm)	-1.76±0.07	-1.91±0.02
H offset EOS _H (mm)	0.24±0.05	0.46±0.04
V RMS lin. error (µm)	250.42	92.73
H RMS lin. error (μm)	182.87	120.00

Beam Tests at CTF3

- Linearity/Sensitivity Test Results:
 - Reduced vertical sensitivity compared to simulated value (100 m⁻¹).
 - An <u>offset</u> (up to ~190 µm) appears for the plane not being swept. Further study is needed.
- Resolution Test :
 - RMS value of 85 consecutive shots (upper bound):
 - Stripline BPM: 9.5 μm (H) and 12.1 μm (V) (for 100 A)
 - BPS 0850: 14.1 μm (H) and 17.8 μm (V) (for 100 A)
 - BPS 0910: 16.1 μm (H) and 14.7 μm (V) (for 100 A)

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

5 – Stripline BPM terminated prototype

- First prototype provides <u>insufficient</u> suppression of the 12 GHz CLIC RF power signal.
- Longitudinal dimensions are very close to transverse ones (25 mm vs 23 mm) → non-ideal transfer response (non TEM fields).
- New design intends to tune the <u>third notch</u> of the frequency response to 12 GHz → electrode length <u>/=37.5 mm</u>.
- Option of a <u>loop-thru calibration</u> via the downstream ports.

5 - Stripline BPM terminated prototype

-135 -140	—Terminated —Shorted
-145	
-150	
-150 -155 -160 -165 -170	 \
-165	
-170	Wanty
-175	ν
-180	35 dB
-185 <mark>0 2 4 6 8 10 12 Frequency (GHz)</mark>	14 16 18

Parameter	Shorted BPM	Terminated BPM
Stripline length	25 mm	37.5 mm
Angular coverage	12.5% (45°)	5.55% (20°)
Electrode thickness	3.1 mm	1 mm
Outer radius	17 mm	13.54 mm
Ch. Impedance	37 Ω	50 Ω
Duct aperture	23 mm	23 mm
Resolution	2 µm	2 μm
Accuracy	20 µm	20 µm
Time Resolution	10 ns	10 ns

5 – Stripline BPM terminated prototype

- > Z_C extremely sensitive to electrode and feedthrough pin fabrication tolerances ($\Delta Z_C = \pm 3.5 \ \Omega \ / \ 0.1 \ mm$).
- Target range: $Z_C = 50 \pm 1 \Omega$

Transfer Function Measurement

Transfer Function Measurement

 45 dB-deep 3rd notch, moves between 11.4-12
 GHz → Non-ideal HF measurement flange.

Directivity: ~40dB up to 4 GHz→ LHC (25– 30 dB)

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Compact prototype
- 5. Terminated prototype
- 6. Conclusions and future work

6- Conclusions and future work

- Compact prototype
 - Insufficient suppression of 12 GHz PETS interference.
 - Good linearity/sensitivity results with beam.
- Terminated prototype
 - Improved suppression of 12 GHz PETS interference.
 - Practical assembly aspects and cost to be optimized.
- Plans for 2014/2015
 - TF measurement with alternative methods (bead pull)
 - Beam test at CTF3 (CLIC Module) of terminated prototype (2 units)
 - Study of alternative technologies (button, IPU,...)

Thank you

2 – Stripline BPM Basics

Compact version (shorted electrodes)

$$Z(\omega) = j Z_c e^{-j\frac{\omega \ell_{\text{strip}}}{c_0}} \sin\left(\frac{\omega \ell_{\text{strip}}}{c_0}\right)$$

 Z_c : beam to stripline coupling impedance

▶ If $\frac{2l}{c_0} = NT_{bunch}$ → Bunch cancellation

(N^{th} notch tuned to f_{bunch})

Terminated version (8 ports)

BI Day 2014, October 16th, Archamps²⁴

Passive filters for DB Stripline BPM

Geometrical issues in compact prototype

-100Transfer Function (dB) -110 -120-130 -140-150 D = 23mm-160 D = 11mm-170<u></u> 2 4 10 12 14 16 18 20 Frequency (GHz)

Lobe distortion grows with electrode width. TF sensitive to resonance at f_{TM_01} =9.99 GHz if aperture and electrode length become comparable.

Beam tests at CTF3

