HL-LHC: BGV

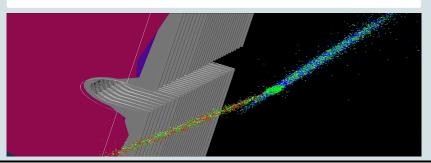
Beam Gas Vertex beam profile monitor

Plamen Hopchev (BI-BL)
with help from B. Dehning, M. Ferro-Luzzi, P. Magagnin

BI Day - 16 Oct 2014

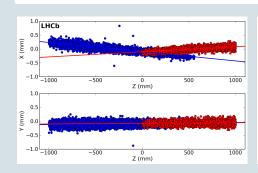
1 Measurement principle

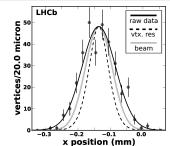
2 BGV demonstrator


1 Measurement principle

2 BGV demonstrator

Beam Gas Vertexing technique


- Use the gas in the primary vacuum as a beam visualising medium
- Measurement based on the detection of inelastic beam-gas interactions (vertices)
 - Tracking detector to measure the produced charged particles
 - Determine vertex position
- Accumulate vertices to measure the transverse beam profile and other beam properties



Application in LHCb

- Beam gas imaging for absolute luminosity calibration in LHCb
 [M. Ferro-Luzzi, NIM A 553, 3 (2005) 388]
- Applied for a first time in 2009
- Since 2011 the SMOG gas-injection system is used in special fills
 - Increase rate of useful events by 3 orders of magnitude

Application in LHCb

- Beam gas imaging for absolute luminosity calibration in LHCb
 [M. Ferro-Luzzi, NIM A 553, 3 (2005) 388]
- Applied for a first time in 2009
- Since 2011 the SMOG gas-injection system is used in special fills
 - Increase rate of useful events by 3 orders of magnitude

References

- Precision luminosity measurements at LHCb: http://cds.cern.ch/record/1951625
- CERN-THESIS-2011-210, CERN-THESIS-2013-301
- BCNWG Notes: https://lpc.web.cern.ch/lpc/bcnwg.htm

Possible beam measurements

- Beam position and angle
- Transverse beam profile
 - Main interest for BI
 - Full beam and b-by-b, absolute scale, cover full LHC cycle
- Longitudinal profile
 - ullet Need timing information (\sim 50 ps resolution)
- Relative bunch charges
 - Compare rates between bunch slots
- Ghost charge, abort gap population
 - Normalize rate to filled bunch slots

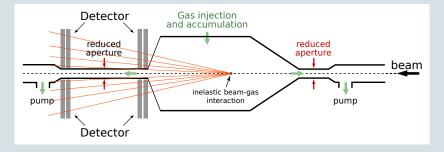
1 Measurement principle

2 BGV demonstrator

BGV for beam diagnostics

- Goal: develop a transverse profile monitor for HL-LHC
 - \bullet Bunch width resolution $<5\%,\,\Delta t<1$ min
 - $\bullet \ \ \text{Absolute beam width accuracy: } 2\%$
- Phase 1: demonstrate the potential by installing a prototype system on one beam at the LHC (LS1)
 - Make a sequence of measurements, bunch-by-bunch, during the ramp
- Phase 2: build a full-blown BGV for each LHC ring (LS2)
 - Further developments possible until HL-LHC (LS3)

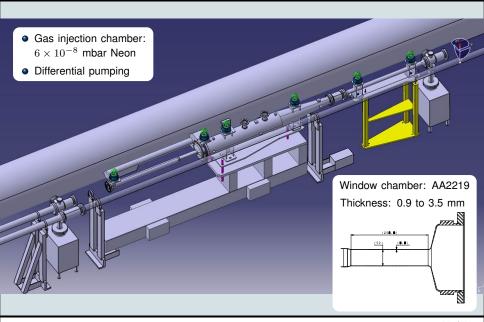
- Collaboration required: BE-BI, TE-VSC, PH-LHCb, EPFL, Aachen
 - Agreement outlining the contributions


Demonstrator conceptual design

- Detector external to the chamber; No movable parts
- Goal for the Demonstrator:
 - Bunch width resolution < 5%, $\Delta t < 5$ min
 - Absolute beam width accuracy: 10%
- Beam size, aperture, target gas ⇒ BGV size
- Critical design parameters: minimal approach to the beam, polar angle acceptance, and material budget (window $x/X_0 \approx 1 \%$) [Ref.]

Demonstrator conceptual design

- Detector external to the chamber; No movable parts
- Goal for the Demonstrator:
 - Bunch width resolution < 5%, $\Delta t < 5$ min
 - Absolute beam width accuracy: 10%
- Beam size, aperture, target gas ⇒ BGV size
- Critical design parameters: minimal approach to the beam, polar angle acceptance, and material budget (window $x/X_0 \approx 1 \%$) [Ref.]


BGV Demonstrator ECR:

https://edms.cern.ch/

document/1324635/1.0

Vacuum system

Vacuum system

Engineering design

N. Chritin (EN-MME)

Production

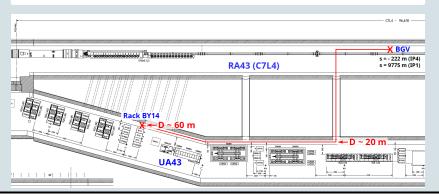
- Managed by the main workshop
- Window chamber most complex and delicate
 - Al block forging (Imbach, CH), machining and EB welding (CERN)

Treatment and Qualification

- Cleaning, copper plating and NEG coating (TE-VSC)
- RF test (BE-ABP), bakeout and vacuum qualification (TE-VSC)
- Metrology (EN-MME)

Vacuum system

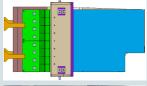
- BGV chambers installed in July 2014 (EN-HE)
- Alignment (Survey) and bakeout (TE-VSC) done


In preparation:

- Chamber temperature monitoring (TE-ABT)
- Forced-air chamber cooling (use in case of need)

Cabling

- BGV located at DCUM \approx 9775 m (C7L4)
- Readout electronics will be placed in racks BY12 BY14
- Cabling campaign in May 2014
 - About 100 cables for detector readout, control, LV, HV, trigger
 - About 30 cables for vacuum pumps, gas injection, gauges (racks VY05,12,20)



Detector

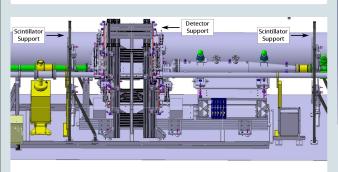
 Scintillating fibre (SciFi) modules, read out with SiPMs

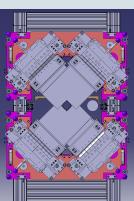
• Fibre diameter: 250 μ m • 1-d hit resolution: 60 μ m

- Same technology will be used in the LHCb upgrade
- Fibre mattresses produced at Aachen, mechanics and electronics – at EPFL
- SiPM noise increases with radiation
- Will use liquid cooling to −40° C
 - ECR in preparation
 - Chiller to be installed in the service tunnel

In total:

- 8 SciFi modules
- 16 384 channels

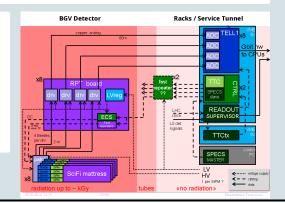



Detector

In production:

- Detector support
- Scintillators and support
- Electronics for the SciFi modules

Installation planned in LS1 and 2015

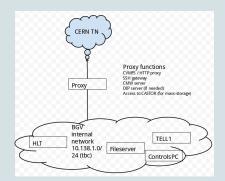


Readout & Control

- BGV readout based on LHCb VELO
 - EPFL/CERN expertise
 - Components available
- Readout supervisor as in LHCb
 - 25 ns, 1 MHz maximum readout rate
 - Readout trigger provided by scintillators

Control

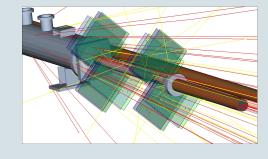
- Based on PVSS/WinCC-OA (copy LHCb)
- Interface to LHC CMW to exchange data and commands



DAQ network

- Under development, with the help of BE-CO
- A single chassis (HP ProLiant) hosts the proxy server and CPU boards
- A switch connects the readout (TELL1) and the CPU farm (HLT)

HP ProLiant BLc7000



"Physics" software

Based on the LHCb software framework

GAUDI: a set of SW components for developing event simulation, reconstruction, visualisation, etc. applications. SW development facilities and interfaces to 3rd party SW (e.g. PYTHIA and GEANT4). Used by several HEP experiments.

Simulation

- Generate beam-gas interactions
- Geometry description and detector response
- Develop event reconstruction algorithms
- Study vertex resolution systematic

Event reconstruction

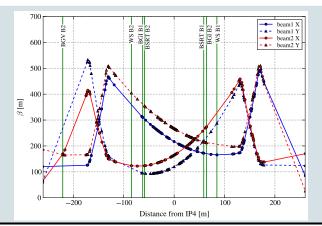
- Pattern recognition and track fitting
- Vertex reconstruction

Status & Plans

- Vacuum system essentially ready
 - $\bullet\,$ Ongoing: chamber T meas. and cooling, gas injection system
- Detector under active preparation
 - Installation planned for 2014 and early 2015
- Readout and Control development ongoing
 - Setup to be finished at P8, then move to P4

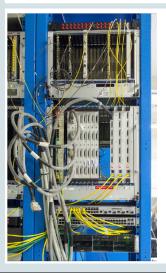
Status & Plans

- Vacuum system essentially ready
 - $\bullet\,$ Ongoing: chamber T meas. and cooling, gas injection system
- **Detector** under active preparation
 - Installation planned for 2014 and early 2015
- Readout and Control development ongoing
 - Setup to be finished at P8, then move to P4


BGV TWiki: https://twiki.cern.ch/twiki/bin/view/BGV/WebHome

Additional Slides

β functions


- Plot of the Nominal optics in Run 1
- At the BGV location:
 - $\beta_x \approx \beta_y \approx 170 \text{ m}$
 - $\bullet~\sigma_{\rm beam}=220~\mu{\rm m}$ (E=6.5 TeV, $\epsilon_{\rm n}=2~\mu{\rm m}$)

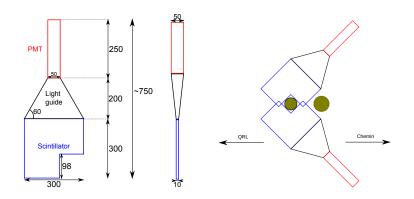
DAQ development at P8, slide from M. Rihl

Rack with TFC, 8 TellIs, 3 control boards.

5/8 Telll's are pingable and working

3/3 control boards working

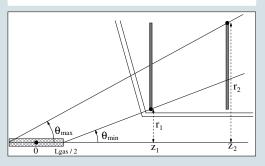
1/I working TFC
(currently with
constraints)


connection Beetles – Repeater Boards – Control board and connection Beetles – Repeater Boards – Tell I established

2

L0 trigger

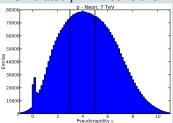
Slide from Q. Veyrat



Size of scintillating plates choosen to be 300mm and the cut-out is the same as the trackers 98mm.

Angular acceptance

- Determine the position and the size of the sensors, needed to cover certain
 - Range of angles $[\theta_{\min}, \theta_{\max}]$
 - Target length Lgas

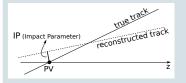


• Aim at minimal r_1

Values used in the design study:

- ▶ $L_{gas} = 1000 \text{ mm}$
- \bullet $\theta_{\min} = 14 \text{ mrad}$ $(\eta_{\text{max}} = 5)$
- \bullet $\theta_{\rm max} = 100 \, {\rm mrad}$ $(\eta_{\min} = 3)$

Simulated p - Ne collisions



Tracking accuracy

The impact parameter σ_{IP} is determined by:

- $oldsymbol{\sigma}_{\mathbf{MS}}$ IP induced by multiple scattering (MS)
 - ullet Minimizing the amount of material (x/X_0) is essential
- $oldsymbol{\sigma_{extrap}}$ IP induced by detector hit resolution and extrapolation distance
 - Use high-resolution detectors and minimize the longitudinal distance (related to the aperture)

$$\sigma_{\rm IP}^2 = \sigma_{\rm MS}^2 + \sigma_{\rm extrap}^2$$

$$\sigma_{\rm MS} \approx r_1 \, \frac{13.6 \, {
m MeV}}{p_T} \, \sqrt{\frac{x}{X_0}}$$

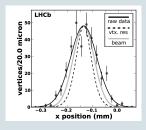
$$\sigma_{
m extrap} pprox \sqrt{rac{z_1^2 + z_2^2}{(z_2 - z_1)^2}} \cdot \sigma_{
m hit}$$

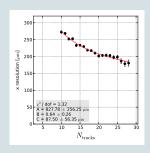
Vertex resolution

For a beam with Gaussian transverse shape:

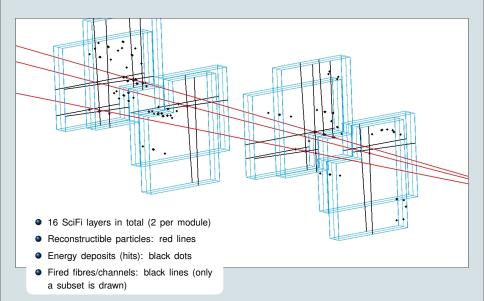
$$\sigma_{\rm raw}^2 = \sigma_{\rm beam}^2 + \sigma_{\rm vtx.res}^2$$

• When $\delta \sigma_{\rm raw}/\sigma_{\rm raw} \to 0$:


$$\frac{\delta \sigma_{\rm beam}}{\sigma_{\rm beam}} = \frac{\sigma_{\rm vtx.res}^2}{\sigma_{\rm beam}^2} \cdot \frac{\delta \sigma_{\rm vtx.res}}{\sigma_{\rm vtx.res}}$$


Therefore, it is important to have

- Small $\delta\sigma_{\rm vtx.res}$ / $\sigma_{\rm vtx.res}$: aim at 10 % (resolution parametrization)
- Small ratio $\sigma_{\rm vtx.res}^2$ / $\sigma_{\rm beam}^2$: preferably < 1


- \bullet σ_{IP}
- ullet $N_{
 m tracks}$ (vertex reconstruction)
- $ullet z_{
 m vtx}$ (extrapolation distance)

Event display

