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@ Outline

1. Motivation for a Cryogenic Current Monitor
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DCCT:

Insufficient resolution for the
low current (low B,N) regime.

Fast BCTs:

Limited to bunched phases

L-Schottky:
Bunched:

¢ time resolution of 20 ms
e accuracy error of <10%

Un-bunched:

¢ time resolution of 200 ms
* accuracy error > 10%

Complex calibration process
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g Motivation for new monitor

Cryogenic Current Comparator

Why go cryogenic for a current monitor?

* Non-destructive measurements of charged beams current
e Current resolution of the order of nA

 Inafrequency range from DC to several kHz
 Independency of beam shape, trajectory and energy

* Exact absolute calibration using an additional wire loop

First implementation as a particle current monitor done at GSI
e 6 new CCC monitors are planned to be installed in future FAIR complex

* Project developed in collaboration with GSI, Jena University and Helmholtz
Institute Jena

s e
Halmholtz-Instilut Jena
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Monitor specifications
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) Working principle

Toroidal core

Components

Magnetic shielding:
e Suppress all field components except the
azimuthal component

Magnetic shield

. Charged b
Pickup core i

* Soft ferromagnetic material with high-
permeability
* Single turn pickup coil

DC Flux transformer

* Couples magnetic fluxtosQuiID e
*  Works from DC — high frequencies
SQUID
Electronics
SQUID* + Electronics
* Measures current in pickup coil DC SQUID

Pickup coil

Matching transformer

Field from AD beam current:

Distance: 100 mm
Current: 12..0.3 uA Beojth = S50 T Superconductive

By field: | 18.5...0.6 pT
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2 Working principle

Components

Magnetic shielding:
e Suppress all field components except
azimuthal beam component

Pickup inductance

* Soft ferromagnetic material with high-

permeability
* Single turn pickup coil

DC Flux transformer
* Couples magnetic flux to SQUID
*  Works from DC — high frequencies

SQUID* + Electronics
* Measures current in pickup coil

Field from AD beam current:
Distance: 100 mm
Current: 12..0.3 pA
By field: | 18.5...0.6 pT
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shield (Nb)

Bearth =50 MT

* GSI prototype

coil (Nb) + core (Nanoperm)

SQUID
Electronics

DC SQUID /

Matching transformer

Superconductive
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o Transverse field
— =100mm
,| Earth’s magnetic field ——r=150mm
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g AD: magnetic environment

Only 2 closest quadrupoles were considered
Maximum magnet current was considered
Field obtained in longitudinal plane of
maximum field

|Z|<300 mm - I Bstrayl< | BEarthI
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g AD: magnetic environment

B
* Measurement of magnetic field in - v L e s S —k
location previewed for CCC B, S
B

e Magnets following AD cycle

Amplitude [1T]

* Measured fields are not significant

Reference
measurement at
quadrupole

1 1 [ | 1 1
65 70 75 80 85 90 95 100 105 110 115

*Courtesy of Marco Buzio

Probe:
Bartington MAG 03S-1000 fluxgate
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I\/Iagnetlc shleldmg

_________________

L =

Curve Length / mm

Number of meanders is the dominant factor to total
attenuation

Magnetic field:

_ E?rth:50HT;‘|J> Ay = ~120dB
— Signal: ~pT

Coupling strength to magnetic core of magnetic field
from beam is much higher than for other modes
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2 Current resolution

-2 —SQUID flux noise

Py Expected noise Iimited Current resolution: B | o it hoiee

nnnnn

— SQUID intrinsic noise (Magnicon) .
. . —E™ () = 1x10°¢ /VHz
— Ferromagnetic core noise (Nanoperm) | \ 0

— Environmental noise z \
10°

1o 10° 10° 1 LIJ" 1 tlf
IB I—P |_1 |_2 Li f[Hz]

N1:N2 sQuUID 30

Env. - 20 1
:I)nmx[f} 1x10 %sz

—@F™ (1) = 1x10%Hz ||

S 25 noise
) —®E™ (f) = 1x10"¢ /VHz
. . . . % 20 —(I)E:;C[f]=1x‘|05¢uf\:Hz |
A high beam current signal coupling is £
desirable to increase resolution (SNR): " revcepnest!

— High pickup inductance =

— Optimal inductance matching ¥ ~_

— Low-noise ferromagnetic core materials o o 0 " s 0"

Loy [uH]
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2\ SQUID measurements

Magnicon XL SQUID
XXF1 Electronics ' (pO

A
LY

 SQUID’s are very sensitive magnetometers: 20
— Noise figures as low as ~1 ue,/VHz

— Sensitivity Z—;~700 uv /e

Vsauip (#Y)
o

[<p0 =2.07 X 10715 [T.m?] J

e Periodic transfer function limits its
dynamic range

Psquip VSQ UID

é Coupling
IbT Circuit }@
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@ SQUID measurements

Do

1
@ »l
‘ VI
1
I

 SQUID’s are very sensitive magnetometers: 20
— Noise figures as low as ~1 ue,/VHz

— Sensitivity Z—;~700 uv /e

Vsauip (#Y)
o

[<p0 =2.07 X 10715 [T.m?] J

e Periodic transfer function limits its

dynamic range GBW

Coupling

Circuit

e Feedback loop is used to linearize
response — Flux Lock Mode (FLL) IbT é:

e @Gain and bandwidth of FLL loop
depend on Vsoyp, GBW and Ry
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@ SQUID measurements

e SQUID’s are very sensitive magnetometers: 2

— Noise figures as low as ~1 ue,/VHz
— Sensitivity Z—;~700 uv /e,

[<p0 =2.07 X 10715 [T.m?] J

e Periodic transfer function limits its
dynamic range

e Feedback loop is used to linearize
response — Flux Lock Mode (FLL)

e @Gain and bandwidth of FLL loop
depend on Vsoyp, GBW and Ry
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Important to avoid
flux jJumps

Vsauip (#Y)
o

GBW

Coupling
Ib Circuit
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SQUID dynamic limits

Flux-jump rate: 1/hour

—

=
—
=)

Flux-jumps may occur due to:

High slew-rate of input signal = Increase

- — 10’
bandwidth _;;o
— Excessive noise - decrease bandwidth =08

f—
o]

10’

Noise level of recent GSI installation:
With older CCC shield and core material

aximum slew rate
p—
<

SQUID dynamic limits: M e

10"

Bandwidth of FLL system: < 20 MHz
Slew-rate of input signal flux: < 5 @o/us
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AD injection

Beam parameters (highest slew-rate):
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Cryostat design

Bayonet connection

Re-condensation unit

Vacuum vessel

Radiation shield

Helium vessel

CCC

e Close cycle operation using LHe re-condensing unit Cryomech PT415:
— Liquification rate: > 27 |/day (from cold gas) equivalent to > 0.81 W
— First maintenance after 20.000 hours of operation cycle; three years of warranty

* LHe vessel support was optimized for reduced heat in-leak and higher frequency of
first vibrational mode
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X Summary

e AD and future ELENA would both profit from an improved beam intensity measurement
diagnostic

* Low-temperature Superconductor Cryogenic Current Monitors are currently the only devices able
to measure DC currents with nA resolution

e AD beam dynamic characteristics need to be taken into account to ensure proper operation of
the CCC

* Cryostat design takes into requirement to have a autonomous operation, reduced mechanical
vibrations, and temperature stability

Outlook
2014
— Start construction of cryostat that will take place at CERN
— Components with longer lead-times have been order: ceramic gaps; He re-condensing unit
— Measurement of frequency response of CCC (outside cryostat) at Jena University
2015

—  Finish cryostat manufacturing

—  Test of cryostat and CCC monitor in lab conditions
— Dead-line for installation in AD is June 2015

—  CCC beam commissioning
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AD beam parameters

Momentum

A pIGeVi] Basic AD Deceleration Cycle A
357 T A
S 10 [ [
Stochastic cooling — ’ ,’
6.6 5. Tune jump ~
Electron cooling = 8
204 pbar injection 8s. B
: Bunch rotation Rebunching g 6
Stochastic cooling s Fast Extraction
Electron cooling
- 165. Q% 4 C
&n \
| = 2 D
Actual Duration Design Duration | <
0.3 : 0L . ‘ ‘ . .
0.1 L
> 0 20 40 60 80 100
12(10) 35(33) 54(52) 71(58) 85(60) time [sec|
RF ON - | I I - -
RFh= 6 1 1 3 1 Time [S]
Beam bunched for deceleration (RF ON), debunched for cooling é‘?{‘:“ﬂ‘i";z’
A B C D
Momentum [GeV/c] 3.57 2.0 0.3 0.1
Revolution freq. [MHz] 1.6 1.5 0.5 0.2
[Total intensity [pbar] 5.0E+07 5.0E+07 5.0E+07 5.0E+07 (1.0E+07)
Phase inj. d.c. cap. deb. d.c. cap. deb. d.c. cap. deb. d.c. cap.
Bunch length 40 [ns] 30 d.c. 172 420 d.c. 136 859 d.c. 104 370 d.c. 110
Harmonic (= N bunches) 6(4) - 1(1) 1(1) - 1(1) 1(1) - 3(3) 3(3) - 1/6 (1)
Average current [uA] 12 11 4 1.3(0.3)
Bunch peak current [uA] 426 | | 74.2 45.6 | - | 140.8 22.3 | - | 40.9 17.3 | - | 174.1
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Magnetic edge points

1\

@D Section 15 — Beam pipe aperture

Allowed inner diameters for beam

120

M0

100

90+

80

Bearm region [rmm)]

70

B0

Allowed ¥ aperture

Alloweed ¥ aperure

pipe in Section 15 of AD:

Beam region < 100 mm:
—0.725<s5<0.632 [m]

Beam region <95 mm:
—0.443 < s<0.406 [m]

Emmitance equal do AD aperture.

a0
-2

Flange near QDS15
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Orbit errors: X, ,=7 mm; Y., =5 mm

C.o0.

Flange near QFN16
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g Magnetic survey of AD-hall

* Courtesy of Marco Buzio (CERN)

Earth’s magnetic field:
e Daily and yearly change < 1%

Measurements inside AD hall:
» General field levels:

BVERTICAL <35 HT BHORIZONTAL < 30 “T

* Field at concrete shielding blocks:
|B]|< 10 uT

» Scaffolding structure behind kicker spools:
150 uT (70 uT @ 0.2 m)



@ Magnetic Shield

Superconducting cavities attenuate non-
azimuthal magnetic field components:

— Symmetrize field from offset beams

— Attenuate external background fields

/ The same effect can be obtained by reversing \
the shielding design

4 beam _ M heam M beam

s,
] .
- :
4 ]
# .
r
F 4
4 H
4 F
A

o /
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*
Hrelative

o Real part - Measurement
i Ee e L o Imag part - Measurement
—Real part - Fitted data
............................... 3\ | — Imag part - Fitter data
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r Magnetic core thermal noise

* Courtesy of René Geithner

Measured noise DESY-CCC pickup coil

s Calculated noise DESY-CCC pickup coil
Measured noise Nanoperm M-764

= Calculated noise Nanoperm M-764

Measured noise SQUID

=X
°|
=

-
-

=Y
e,

Current Noise (A/Hz'?)

10° 10° 10 10
Frequency (Hz)

~ 2 - _
~ 40 —PSD—
L':.-'TLO
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SQUID’s

superconductors

P barrier

basics




Coupling circuit

Mg | M | M
A A "l A A 5| A
.:I i A N
b 5 C W/
IB H J{| i LP |—1 Jﬁ] |'} I—2 I-I - ‘>|H\
5 N 5o
MN=1 N1:N2

Ip(t) (Lp + Lw + L1)(La + L;) — M7}
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FLL flux-jump examples

Beam Current [us] Total Flux at SCQUIL [pa0]

I |Il.el(-.'r.._1 bearn current signal

N PP A SR offsetiduc to juwnp.in. ... |
3 SQUIR working point 10

0.1 . ! ; ! . : : : : :

02 025 : _

0.3

-0.3

04F-f-F 2
05 : :

0.6 :
a5t

07

RIR] i i i i i 9 85 -8 75 7 BA
-15 -10 5 0 2 10 15
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@ Thermal noise from RC-shunt

.noise V(Vout_1) 11 oct 1000 1u 10Meg

RO R13 R12 Vout 1

1n noiseless o 1n noiseless C1 L 50p o 1n noiseless
" LS L2 L1 L3 L4
104 104p 239 2.3p 1
AC 10E- He R1 > 1 ° -

J7 K2 L5L21 J7 K1L1L30.9 J7

e Noise level (referred to beam current) at T=4.2K:

BW=1kHz 0.017 nA 0.085 nA
BW=10kHz 0.5 nA 1.2 nA
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g Cryostat support optimization

N

7
E ! i i ' | ® Diameter = 2mm
2 11 e ® Diameter = 3mm
- i ’ X : ! Diameter = 4mm
(D) 8O t---------p- 1 R . .
= L ; | ® Diameter = Smm
g 601---------; X ------------ Diameter = 6mm
B 4o b m N cods = 12
< o ; ; ; ; ; € N°cords = 16
Zo 20' ____________ A N° cords =20
- 0 ; .' .' ; | K N° cords = 24
@ 0.00 0.05 0.10 0.15 0.20 0.25

Heat in-leak [W]

SOK[W] 42K |[W]

Kevlar supports (16x) 0.5864 0.0473
Bayonet + Safety Valve 3.6065 0.1832

Cryostat instrumentation 0.8185 0.0527
Heater wires 0.0195 0.0004
SQUID cabling 0.0162 0.1798
Total 5.0471 0.4219
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