
Principles of
Synchronization

Benjamin C. Pierce

University of Pennsylvania

Workshop on Cloud Services for File Synchronisation and Sharing

CERN, November 2014

Mysteries of Dropbox

Benjamin Pierce
University of Pennsylvania

John Hughes
Thomas Arts

Quviq

Workshop on Cloud Services for File Synchronisation and Sharing

CERN, November 2014

We’re here because we care about
synchronization!

Actually, a lot of people care about
synchronization

And they care a lot

~200M

So…
Is yours correct?

What does that even mean??

Goals

• Ultimate goal: Answer this question rigorously
• i.e., give a complete and precise definition of how a

synchronization service should behave (from the point
of view of users, not protocols)

• i.e., write down a formal specification that, for each
observed interaction with a synchronization service
(involving several replicas being read and written over
time), says whether or not it is OK

• Goal for this talk:
• Report on baby steps in this direction

A Little History

• Unison is the only synchronizer based on a formal
specification (AFAIK)

• Main designers
• Trevor Jim, Jerome Vouillon, and BCP

• First version distributed in 1998
• Earlier prototypes going back to 1995

• Still widely used

• Open-source, multi-platform (Windows, OSX, Linux)

• Very few reported bugs with potential to lose data

But the world has changed…

Synchronization tools: (bidirectional, sync operations
explicit)

• Unison, …

Synchronization services: (multi-directional, sync in
background)

• Central server (“cloud-based”)
• Dropbox, Google Drive, OneDrive, Owncloud, SpiderOak,

Sugarsync, Box.net, Seafile, Pulse, Wuala, Teamdrive, Cloudme, Cx,
Amazon cloud service, …

• Also distributed filesystems (Coda, GFS, …)
• Peer to Peer

• Bittorrentsync

concentrate on these

Challenges

• Syncing in background produces inherently
nondeterministic behaviour
• Our specification will need to specify sets of legal

behaviors

• Similar to weak memory models for multi-core
processors…

• But harder!
• directory structure
• deletion
• conflicts
• …

One challenge: Conflicts

• Unison asks the user to
resolve

• Modern systems just do
something

• e.g., choose ”earlier”
value, create a ”conflict
file” containing other value

• Critical to do the right
something!

What should
the world look

like now??

write(“a”)

write("b")

Another challenge:

How can we test that our
specification is accurate??

This is hard!
So…

Don’t write tests!

Generate them

QuickCheck

1999—invented by Koen Claessen and John Hughes,
for Haskell

2006—Quviq founded, marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc…

QuickCheck

API
under
test

A minimal failing
example

State Machine Models

API

Calls
API

Calls
API

Calls
API

Calls

Model
state

Model
state

Model
state

Model
state

Test Setup

Laptop

VM

VM

VM

Dropbox
server

Challenges of testing

• Uniformity
• Many synchronization services
  Want a single specification and test framework
 that applies to multiple systems

• File synchronizers are SLOOOOWWWW!!!
• Exponential back-off
• No such thing as waiting ”long enough”
• Tests must adapt to the speed of the synchronizer

• Interference between tests
• Reads/writes/deletes in the same directory
•  Isolate tests by using many directories
• Test setup:

• Delete old directories, and wait
• Create new directories, and wait…

and wait… and wait…

A small simplification

Real-world filesystems are pretty complicated

So let’s start with something a little simpler…

“Filesystem” = 1 file
Operations: read, write

(and, later, delete)

Tests are sequences of commands

• read(Node)

• write(Node,V)

• sleep

• synchronize?

• stabilize
• Wait for value observed on each node to be the same

 (Also conflict files)

Observations

• Made dynamically; the specification says which
observation sequences are valid

• What do we observe?
• read(N)  V

• write(N,Vnew)  ()

• Conflicts??

No: write(N,Vnew)  Vold
It matters what we

overwrite!

Observing conflicts?

• First try: when a write creates a conflict, check that
one of the conflicting values appears in a conflict
file

write(“a”)
write("b")

read()  “a”

Check that "b"
appears in a conflict

file in the same
directory

Nope

Observing conflicts… eventually!

• New observation:
• stabilize()  (V,C)

stable value
 (same everywhere)

set of values found in
conflict files

 (same everywhere)

Now…

What should our
specification look like?

A dead end

• Compute a ”happened before” relation (à la weak
memory models) and express correctness in terms
of that…

But what about
repeated values?

E.g. deletion?

write(“a”)

write("b")

read()  “a”

write(“c”)

A Better Idea

• Model the whole system state including the server

• Update the state after each observation

• Add ”conjectured actions” to the observed ones
 up(N) node N uploads its value to the server

 down(N) node N is refreshed by the server

• Corollary: there may be many possible states at
each stage in a test; a test fails when there are no
possible states that explain the observations that
have been made

Modelling the state

• Stable value (i.e., the one on the server)

• Conflict set (only ever grows)

• For each node:
• Current local value

• ”Fresh” or ”stale”

• ”Clean” or ”dirty”

i.e., has the global value changed
since this node’s last

communication with the server

i.e., has the local value been
written since this node was last

refreshed by the server

Modelling the operations

• read(N)  V
• Valid when: V = local value on node N
• Action: state unchanged

• write(N,Vnew)  Vold
• Valid when: Vold = local value on node N
• Action: local value on node N becomes Vnew
 node N becomes dirty

• stabilize()  (V,C)
• Valid when: V = global value, C = global conflict set, all nodes

fresh and clean
• Action: state unchanged

Modelling the operations
continued…

• down(N)
• Valid when: N is neither dirty nor fresh

• Action: take N’s local value from global value

 N becomes fresh

Modelling the operations…

• up(N)
• Valid when: node N is dirty

• Action: if node N is fresh then

 take global value from node N’s local value

 N becomes clean

 other nodes become stale

 else

 add N’s local value to conflicts

 N becomes clean

Surprise!

write(N1, "a")  missing
write(N2, "a")  missing
stabilize()  (”a”, {})

stable value

previous value was
“missing”, i.e., N2
has not seen the
write of “a” yet

conflict set
(empty!!)

Specification and implementation disagree…
Is it a feature or a bug?

Refining the specification…

• Add special cases in specifications of up and down
commands when the local and global values are
identical

• The test now passes

Dealing with Deletion

• Deletion can easily be added to the model:
 delete(N) just means write(N, missing)

• Try adding this and run some tests…

Surprise!

write("a")

read()  "a"

delete()

read()  missing

write("b")

read()  "b"

N1 N2 N3
Write “a”

on N1

N2 sees
N1’s value

Now write
“missing”

N2 sees “missing” (so
stable value at server

is “missing”)
Now N3 writes

"b" (/=
“missing”)

And the server
overwrites the

stable value with
"b"!

Refining the specification…

• Add special cases for “missing” in up and down
actions:
• When “missing” encounters another value during an up

or down, the other value always wins
• I.e., when a write and a delete conflict, the delete gets undone

And try some more tests…

Another surprise!

write(”a”)

delete()

write(”b”)

write(”c”)

read()  missing???

sleep(2 seconds)

sleep(.5 second)

sleep(.5 second)

sleep(.75 second)

An Even Bigger Surprise!

write(N1, "b") -> missing
sleep(.75 second)
delete(N1) -> "b”
sleep(.75 second)
read(N1) -> ”b”

b came back after being deleted!?!

Work in progress!

• Current state:
• Formal specification of single-file behavior of Dropbox

and related services

• One apparent bug in Dropbox so far

• Prototype validation harness in Erlang QuickCheck

• Next steps:
• Add directories

• Test your synchronizer :-)

Resources

• Unison
 www.cis.upenn.edu/~bcpierce/unison/

• Unison specification
 google “What is a File Synchronizer?”
 google “What’s in Unison?”

• Quviq testing tools
 www.quviq.com

• Lenses
 http://cis.upenn.edu/~bcpierce/papers/index.shtml#Lenses
 (a more general theory of bidirectional information
 propagation between related structures)

http://www.quviq.com
http://cis.upenn.edu/~bcpierce/papers/index.shtml#Lenses
http://cis.upenn.edu/~bcpierce/papers/index.shtml#Lenses

