

CNRS - DSI

My CoRe - ownCloud at CNRS

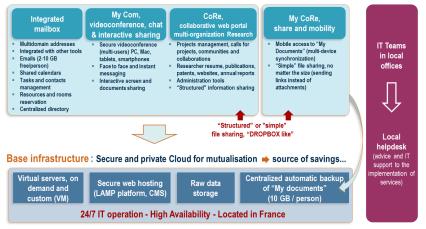
Content

- 1 Background and context
- 2 Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps

Content

1 Background and context

- 2 Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps


6 Annexes

Background and context ^(1/3)

Users "ecosystem" : native integration of tools easy to use ...

Helpdesk

*Laboratories, administrative units and functional departments can benefit from these services David Rousse | CNRS - DSI | CERN workshop - 17/18 November 2014

Background and context ^(2/3)

Business needs

- □ Synchronization and sharing service to provide a secure alternative to Dropbox for CNRS users
- ${}^{{}_{ o}}$ Target (on the long term) = 100.000 end users with 10GB per user

Solution

- ownCloud (community edition), because it has the required functionality and it is open source
- New technical infrastructure located under CNRS' IN2P3 Computing Center

Background and context ^(3/3)

Schedule and deployment steps

- □ January to August 2013 : market survey
- September 2013 to April 2014 : ownCloud technical evaluation (in collaboration with Linagora)
- □ May to JuneNovember 2014 : implementation and test
- □ July to August 2014December 2014 to January 2015 : beta service for end users, 2.000 users / 5 GB per user
- □ From September 2014 to end 2015From February 2015 to end 2015 : deployment to other CNRS laboratories

Content

1 Background and context

2 Service summary

3 User feedback

4 Architecture

5 Next steps

6 Annexes

Service summary ^(1/3)

. 0 / 33					
Status :	Planned				
Number of users (target) :	30.000 for end 2015 (100.000 (?) on				
	the long term)				
Default and Maximum quota :	10GB				
Linux/Mac/Win user ratio :	(estimated) 20/20/60				
Desktop/mobile/web clients ac-	Unknown yet				
cess ratio :					
Technology :	ownCloud with Galera-MariaDB and				
	Scality backend storage				
Target communities :	CNRS members				
Integration in current environ-	None (except our existing Shibboleth				
ment :	SSO backend)				
Risk factors :	Load on DB				
Most important functionality :	ownCloud core with custom apps (see below)				
Missing functionality :	Share files temporary and then delete the shared files, once downloaded				
David Rousse CNRS - DSI CERN workshop - 17/18 November 2014	(see below)				

(P) (=)

Service summary ^(2/3)

ownCloud community edition 7 with few apps

- ownCloud core = https://github.com/owncloud/core;v7.0.2
- Antivirus app = http://apps.owncloud.com/CONTENT/ content-files/157439-files_antivirus.tar.gz
- □ Activity app = https://github.com/owncloud/activity;v7.0.2
- \Box Without Versions app

Service summary ^(3/3)

And some apps developed/forked by CNRS

- □ App for metrics on service usage = https://github.com/ppaysant/dashboard
- □ App for managing a lot of groups = https://github.com/ppaysant/lotsofgroups
- □ App for end users group management = https://github.com/ppaysant/group_custom
- □ App for password policy enforcement =
 https://github.com/ppaysant/password_policy
- □ App for GTU online agreement = https://github.com/marcdexet-cnrs/gtu
- □ App for filtering access depending on end user groups = https://github.com/marcdexet-cnrs/gatekeeper
- □ App for end users authentificate and account provisionning = https://github.com/marcdexet-cnrs/user_servervars2
- □ A specific theme = https://github.com/CNRS-DSI-Dev/mycore

User feedback

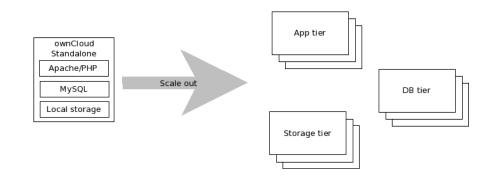
- 1 Background and context
- 2 Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps
- 6 Annexes

User feedback

Service not deployed yet !

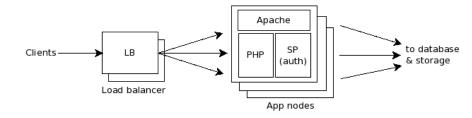
- But end users ask for such a service !
- □ Some local implementations of ownCloud exist at CNRS (over than 35), for a single laboratory typically

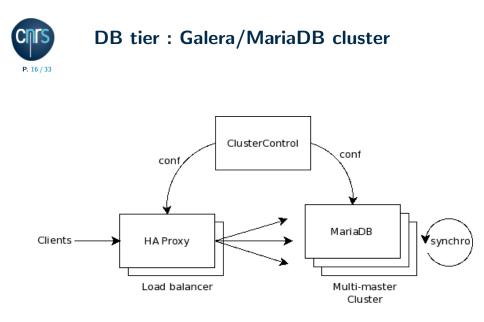
Users often use Dropbox, Google Drive, ... when no solution is provided internally

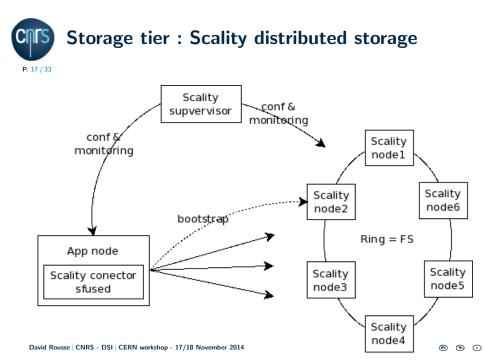

Content

- 1 Background and context
- 2 Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps

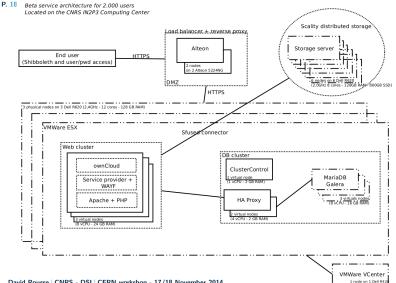
6 Annexes



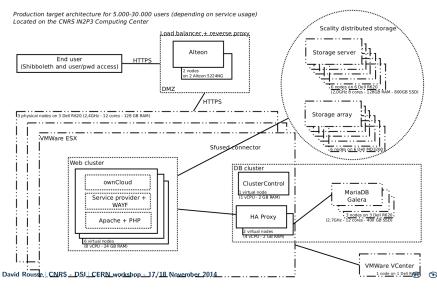

Architecture overview



B) 🔊 🗉



Beta service architecture



(P) (=)

Production service architecture

P. 19/33

Content

- 1 Background and context
- **2** Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps

Next steps

Deploy the beta service for 2.000 CNRS users

- $\hfill\square$ Get a real feedback from end users
- $\hfill\square$ Check the way the architecture works live !

Technical improvments

- \square Reducing the DB load
- Using object storage instead of sfused connector
- Deploying the service over more than one site (at least for storage)
- Using the "Server to server sharing" ownCloud function (if needed to reduce global load, or between CNRS and other organizations)
- □ Automatizing end users tests (if possible with CERN's smashbox)
- $\hfill\square$ Improving the Versions, Activity and Antivirus apps (if needed)
- Developing an app to share via email files temporary and then delete the shared files, once downloaded

Questions?

Contacts at CNRS

- marc.dexet@dsi.cnrs.fr (developer)
- gilian.gambini@dsi.cnrs.fr (technical manager)
- eric.gervasoni@dr20.cnrs.fr (end users committee manager)
- □ paulo.moradefreitas@dr2.cnrs.fr (end users committee manager)
- david.rousse@dsi.cnrs.fr (project manager)
- patrick.paysant@linagora.com (developer)
- Iyderic.saint-criq@cnrs-dir.fr (developer)
- jerome.jacques@ext.dsi.cnrs.fr (system administrator)

Annexes' content

- 1 Background and context
- **2** Service summary
- 3 User feedback
- 4 Architecture
- 5 Next steps

Annex 1 : load test method (1/2)

Functional hypothesis on the service usage

- □ Service accessible to all CNRS population : target 100.000 (end of 2015)
- $\hfill\square$ 50% of population will actually use the service
- \Box Quota per user : 10GB
- □ Average files per user : 1.000
- □ Average file size : 5MB
- □ File updates per day per user : 50
- $\hfill\square$ Each file updated is replicated to 4 different devices :
 - Number of devices per user : 3
 - ▶ 15% of files are shared, to 5 other users

Annex 1 : load test method (2/2)

P. 25 / 33

Estimate based on these hypothesis

- Hypothesis on Apache (8 cores, 16GB RAM) : 530 simultaneous requests
- Hypothesis on MariaDB (8 cores, 16GB RAM) :
 - SELECTs : max 3857 per sec
 - INSERTs : max 22000 per sec
 - UPDATEs : max 3857 per sec

Load tests to check our estimate, under a simple architecture

- 2 reverse proxies (Apache with modproxy)
- 2 load balancing servers (Piranha)
- 2 ownCloud servers (Apache, ownCloud 6)
- 1 MariaDB server

Annex 2 : DB load estimate

Required MariaDB servers, based on theoretical approach

SQL servers		Number of SQ	L nodes (~ VM) for the estima	ated SQL load (8	8 cores/16GB RAM	A per node)
	Number of use	ers (N)					
% of active users	1	1000	5000	30000	50000	70000	100000
5,00%	1	1	1	3	5	7	10
10,00%	1	1	1	6	9	12	18
15,00%	1	1		8	13	18	25
20,00%	1	1	2	11	18	24	35
30,00%	1	1		16	27	38	54
50,00%	1	1		18	30	41	59

Annex 2 : Web load estimate

Required Apache servers, based on theoretical approach

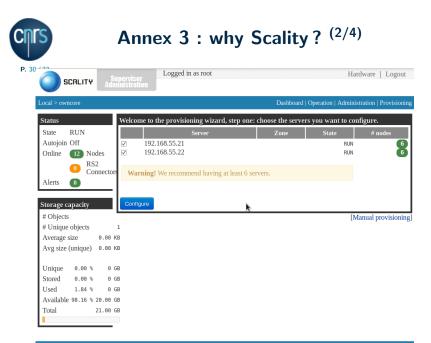
W	eb servers		Number of web	nodes for the	estimated load	1 (8 cores/16GB	RAM per node)	
		Number of use	ers (N)					
%	of active users	1	1000	5000	30000	50000	70000	100000
	5,00%	1 serv	1 serv	1 serv	3 serv	5 serv	7 serv	10 serv
	10,00%	1 serv	1 serv	1 serv	6 serv	10 serv	14 serv	19 serv
	15,00%	1 serv	1 serv	2 serv	9 serv	15 serv	20 serv	29 serv
	20,00%	1 serv	1 serv	2 serv	12 serv	19 serv	27 serv	38 serv
	30,00%	1 serv	1 serv	3 serv	17 serv	29 serv	40 serv	57 serv
	50,00%	1 serv	1 serv	5 serv	29 serv	48 serv	67 serv	95 serv

CITSAnnex 2 : network bandwidth load estimate

P. 28/33

Network bandwidth load estimate, based on theoretical approach

Total DL	Network band	with simulation	n for download	Sync own+Syn	c share] (global o	ownCoRe archit		
	Number of use	ers (N)						
% of active users	1	1000	5000	30000	50000	70000	100000	
5,00%	0 mb/s	13 mb/s	64 mb/s	382 mb/s	637 mb/s	891 mb/s	1 273 mb/s	
10,00%	0 mb/s	25 mb/s	127 mb/s	764 mb/s	1 273 mb/s	1 782 mb/s	2 546 mb/s	
15,00%	0 mb/s	38 mb/s	191 mb/s	1 146 mb/s	1 910 mb/s	2 674 mb/s	3 819 mb/s	
20,00%	0 mb/s	51 mb/s	255 mb/s	1 528 mb/s	2 546 mb/s	3 565 mb/s	5 093 mb/s	
30.00%	0 mb/s	76 mb/s	382 mb/s	2 292 mb/s	3 819 mb/s	5 347 mb/s	7 639 mb/s	
30,00%								
50,00%		127 mb/s	637 mb/s	3 819 mb/s	6 366 mb/s	8 912 mb/s	12 731 mb/s	
50,00%	0 mb/s	with simulation			6 366 mb/s hare] (global owr			
50,00% Total UL	0 mb/s Network band	with simulation					ture)	
50,00% Total UL	0 mb/s Network band Number of us 1	with simulation ers (N)	n for upload [Sy	nc own+Sync s	hare] (global owr	nCoRe architect	ture) 100000	
50,00% Total UL % of active users	0 mb/s Network band Number of use 1 0 mb/s	with simulation ers (N) 1000	n for upload [Sy 5000	nc own+Sync s 30000	hare] (global owr 50000	nCoRe architect 70000	ture) 100000 463 mb/s	
50,00% Total UL % of active users 5,00%	0 mb/s Network band Number of us 1 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s	n for upload [Sy 5000 23 mb/s	nc own+Sync s 30000 139 mb/s	hare] (global owr 50000 231 mb/s	nCoRe architect 70000 324 mb/s	ture) 100000 463 mb/s 926 mb/s	
50,00% Total UL % of active users 5,00% 10,00%	0 mb/s Network band Number of use 1 0 mb/s 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s 9 mb/s	n for upload [Sy 5000 23 mb/s 46 mb/s	nc own+Sync s 30000 139 mb/s 278 mb/s	hare] (global owr 50000 231 mb/s 463 mb/s	nCoRe architect 70000 324 mb/s 648 mb/s	100000 463 mb/s 926 mb/s 1 389 mb/s	
50,00% Total UL % of active users 5,00% 10,00% 15,00%	0 mb/s Network band Number of use 1 0 mb/s 0 mb/s 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s 9 mb/s 14 mb/s	n for upload [Sy 5000 23 mb/s 46 mb/s 69 mb/s	nc own+Sync s 30000 139 mb/s 278 mb/s 417 mb/s	hare] (global own 50000 231 mb/s 463 mb/s 694 mb/s	nCoRe architect 70000 324 mb/s 648 mb/s 972 mb/s	ture) 100000	


Annex 3 : why Scality ? $^{(1/4)}$

Software-defined storage solution

- Objects storage
- Scale-out storage
- Mutualized storage
- Data protection with ARC technology

What we like

- Compatible with all x86 servers
- □ Best ratio between raw data/util data
- □ Easy to install and administrate
- High available, by design
- Hardware RAID disabled

B 🔊 🕤

Annex 3 : why Scality ? (3/4)

ng A	dministr	atio	n Interfa	ace						Welcome,	Joe Madurei
	Supervisor > Local >					-					
	Dashboard		Adr		n	Pre	ference	S			
Node	s Con	nector	rs Ad	tions							
	_	-				_					
	_		Nodes								
Status Anaconda											
Nor	kes 24				by keys						
	nnectors 12		nodea.ring	2.devsca.co	m						
		,	Name	Key	Task		Objects		CPU	State	Action
Tas Tas	ks 9	0.0	odea_r2_01	CE38E3	2 B	D	1809651		2%	RUN	Leave
Nodes		0,	nodea_r2_02	863863	2	0	1806412		2%	RUN	Leave
		0.1	iodea_r2_01	CE38E3		D	1809651		2%	RUN	Leave
Objects	65,134,803	0.	iodea_r2_02	8E38E3	2)	1806412		2%	RUN	Leave
	21,728,249	0 1	odea_r2_01	CE38E3		D	1809651		2%	RUN	Leave
	23.61 KB	0.1	odea_r2_02	8E38E3		0	1806412		2%	RUN	Leave
Avg size (unique) Unique 8.43	171.00 KB TB 44.18 %		Disk Name	Stored	Used		Avail	Total (TB)	Stored/I	Used	
Stored 8.43			lisk1(OK)	0.07	0.10	0.65	0.74				
	TB 27.26 %		fisk1(OK)	0.07	0.10	0.65	0.74				
Available 8.43											
Total	8.43 TB	1	nodeb.ring	2.devsca.co	m						
			-							10000	1222
			Name	Кеу	Task		Objects		CPU	State	Action
			odea_r2_01	CE38E3		0	1809651		2%	RUN	Leave
			odea_r2_01	CE38E3		D	1809651		2%	RUN	Leave

David Rousse | CNRS - DSI | CERN workshop - 17/18 November 2014

Annex 3 : why Scality ? (4/4)

BB 🕞 🗉

Annex 4 : some links

URLs in relation with My CoRe

- ownCloud load test in detail =
 https://github.com/CNRS-DSI-Dev/mycore_press/blob/
 master/CERN-CNRS-meeting-20140513.pdf
- □ JoSy conference (in French), Strasbourg 2014 May = https://github.com/CNRS-DSI-Dev/mycore_press/blob/ master/CNRS-JoSy-20140519.pdf
- □ Scality in detail, press made for the CNES (in French) = https://github.com/CNRS-DSI-Dev/mycore_press/blob/ master/CNES-CNRS-Scality-20140619.pdf
- D My CoRe, how is it buid? =
 https://github.com/CNRS-DSI-Dev/mycore_build
- Other My CoRe press to come = https://github.com/CNRS-DSI-Dev/mycore_press
- □ CERN testing tool = https://github.com/cernbox/smashbox