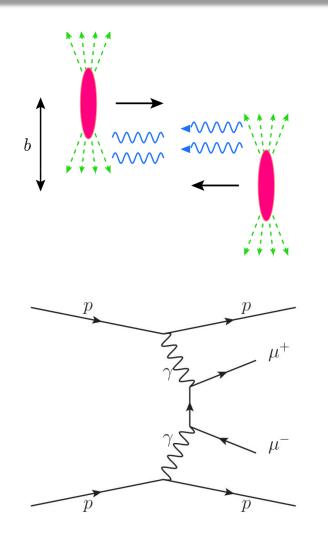
Photon-photon interactions in proton-proton collisions at the LHC

Mateusz Dyndal


IV Workshop on QCD and Diffraction at the LHC

16 December 2014

Outline

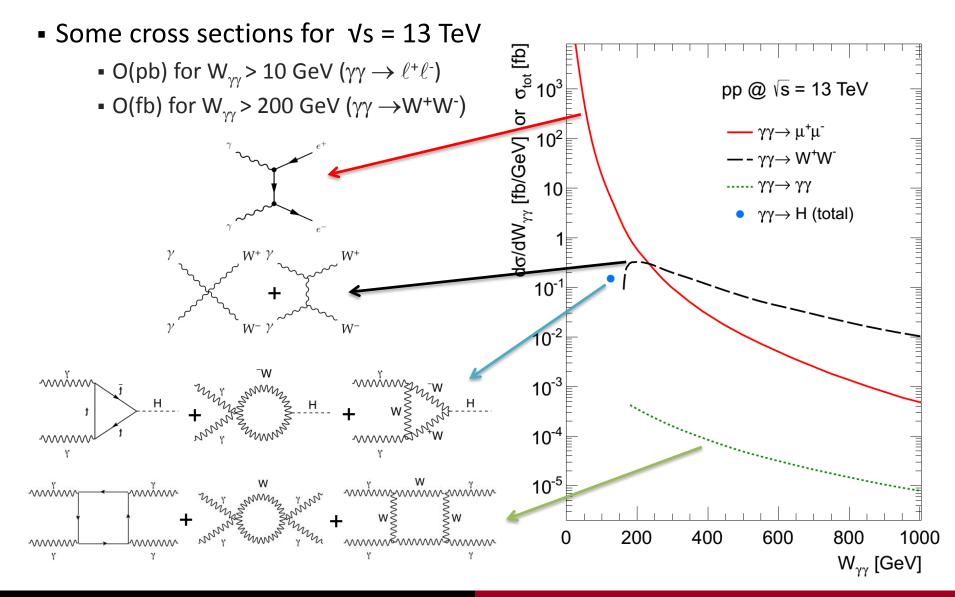
- Theory of elastic pp ($\gamma\gamma$) \rightarrow pp X interactions
- γ IP interactions in pp (LHCb results and STARLIGHT MC generator)
- Proton finite size effects (or "absorbtive corrections")
 - Interpretation of CMS data
 - $\gamma\gamma \rightarrow \ell^+\ell^-$ (and/or $\gamma\gamma \rightarrow W^+W^-$)
- Semi-elastic and double dissociative γγ interactions
 - Form-factors and Photon PDFs

Theory: elastic pp ($\gamma\gamma$) \rightarrow pp X

Chen et al., Phys.Rev. D7 (1973) 3485-3502. Budnev et al., Nucl.Phys. B63 (1973) 519-541.

The cross section for this process is calculated:

(1) Using the number of equivalent photons (EPA) by integration over the whole virtuality range:

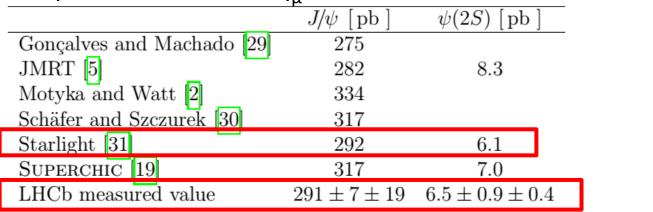

$$dN = \frac{\alpha}{\pi} \frac{dQ^2}{Q^2} \frac{dx}{x} \left[(1-x) \left(1 - \frac{Q_{min}^2}{Q^2} F_E(Q^2) \right) + \frac{x^2}{2} F_M(Q^2) \right]$$
$$Q_{min}^2 \simeq m_p^2 \frac{x^2}{1-x} \qquad Q_{max}^2 = 2 \text{ GeV}^2$$

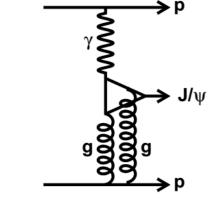
Integrand contains the proton EM form factors (calculations originally done by Chen, Terazawa, et al. for $\gamma\gamma \rightarrow \mu^+\mu^-$ process)

(2) EW $\gamma\gamma \rightarrow X$ cross section. Note: letting α_{EM} running wrt some scale (mass of the system???) is wrong. Here the photon virtualities are very small...

MC generators: HERWIG++, LPAIR, STARLIGHT, FPMC, ...

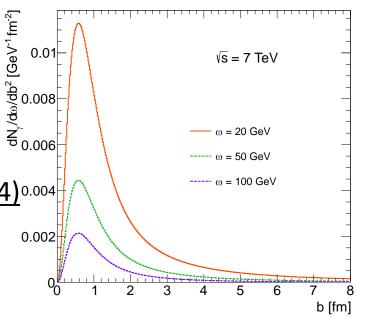
Theory: elastic pp ($\gamma\gamma$) \rightarrow pp X




16 December 2014

γ - IP interactions in pp

 LHCb measurement: Exclusive J/ψ and ψ(2S) production in pp collisions at Vs=7 TeV (Updated) (J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002.)

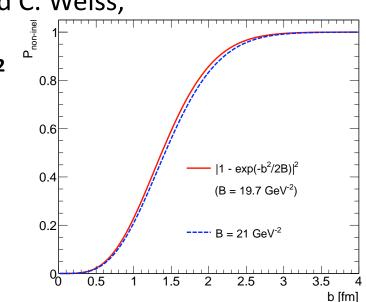

- STARLIGHT includes absorbtive correction treatment (r ≈ 0.85-0.9 in this invariant mass range)
 - r(y) = 0.85 0.1|y|/3 assumed in the analysis
- Some approximations done in STARLIGHT: unable to use it for higher invariant masses (S. R. Klein and J. Nystrand, Phys. Rev. Lett. 92, 142003.)
 - No proton magnetic form-factor included

- Many of the MC generators (HERWIG++, LPAIR, FPMC) for pp ($\gamma\gamma$) \rightarrow pp X do not include the requirements that the:
 - Protons should remain intact (strong absorption correction)
 - Photons have to be emitted coherently from the proton (finite transverse size of the proton)
- Formalism (quite standard in HI collisions): ^{• 0.006} <u>MD and Laurent Schoeffel, Phys. Lett. B (2014)</u>
 <u>doi:10.1016/j.physletb.2014.12.019</u>

- Spectrum of the photons from the proton can be written in the impact parameter space (via Fourier transform):

$$n(b,\omega) = \frac{\alpha_{EM}}{\pi^2 \omega} \left| \int dk_{\perp} k_{\perp}^2 \frac{G_E(Q^2)}{Q^2} \left[(1-x) \frac{4m_p^2 + Q^2 \mu_p^2}{4m_p^2 + Q^2} + \frac{1}{2} x^2 \frac{Q^2}{k_{\perp}^2} \mu_p^2 \right]^{\frac{1}{2}} J_1(bk_{\perp}) \right|^2$$

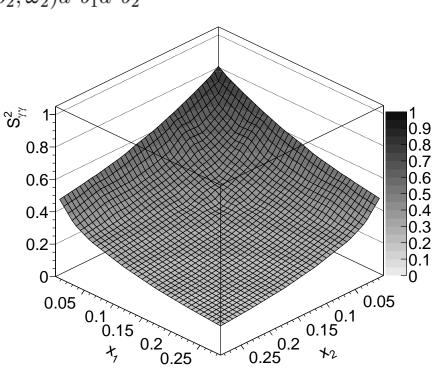
virtuality of the photon $Q^2 = -k^2 = k_{\perp}^2 + \frac{\omega^2}{\gamma^2}$ energy fraction of the proton carried by the photon $x = 2\omega/\sqrt{s}$ 9

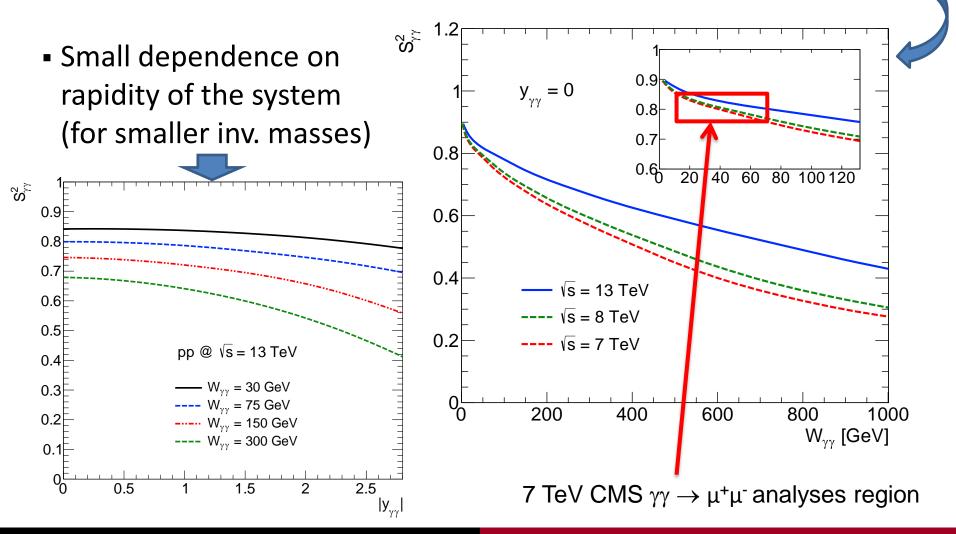

No overlap -> photon spectra no longer factorize:

$$\sigma(p+p \to p+p+X) = \int \int f(\omega_1) f(\omega_2) \sigma_{\gamma\gamma \to X}(\omega_1, \omega_2) \frac{d\omega_1}{\omega_1} \frac{d\omega_2}{\omega_2}$$
$$f(\omega_1) f(\omega_2) \to \int \int n(\vec{b}_1, \omega_1) n(\vec{b}_2, \omega_2) P_{non-inel}(|\vec{b}_1 - \vec{b}_2|) d^2 \vec{b}_1 d^2 \vec{b}_2$$

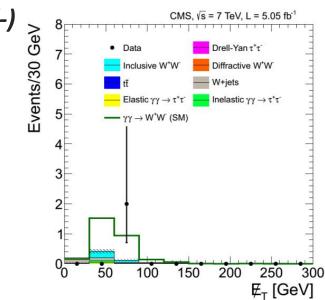
• The pp (non-inelastic) interaction probability can be obtained from the pp elastic scattering amplitude $\Gamma(s,b)$ (L. Frankfurt, C. E. Hyde, M. Strikman and C. Weiss, Phys. Rev. D 75 (2007) 054009.) -> with BDL: $P_{non-inel} = |1 - exp(-b^2/2B)|^2$

$$\left. \begin{array}{l} \sigma_{\rm el}(s) \\ \sigma_{\rm tot}(s) \\ \sigma_{\rm inel}(s) \end{array} \right\} = \int d^2b \times \begin{cases} |\Gamma(s, \boldsymbol{b})|^2, \\ 2\operatorname{Re}\Gamma(s, \boldsymbol{b}), \\ [1 - |1 - \Gamma(s, \boldsymbol{b})|^2] \end{cases}$$


 A reduction of the exclusive cross section is expected

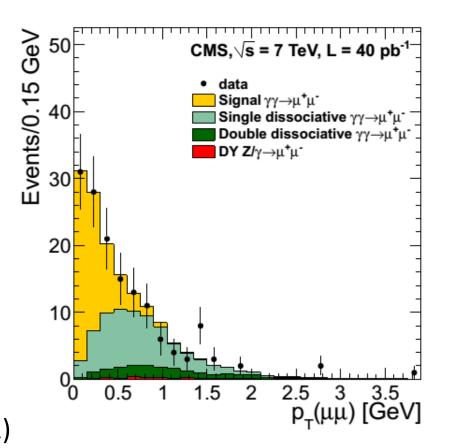

 Using this formalism, a proton survival factor (or absorbtive correction) can be introduced:

$$S_{\gamma\gamma}^{2} = \frac{\int_{b_{1}>r_{p}} \int_{b_{2}>r_{p}} n(\vec{b}_{1},\omega_{1})n(\vec{b}_{2},\omega_{2})P_{non-inel}(|\vec{b}_{1}-\vec{b}_{2}|)d^{2}\vec{b}_{1}d^{2}\vec{b}_{2}}{\int_{b_{1}>0} \int_{b_{2}>0} n(\vec{b}_{1},\omega_{1})n(\vec{b}_{2},\omega_{2})d^{2}\vec{b}_{1}d^{2}\vec{b}_{2}}$$

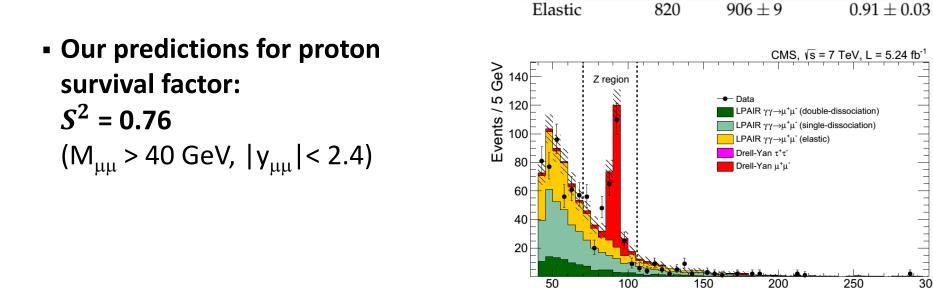

- The general dependence is wrt x_{1,2} of colliding photons
- Can be convoluted with MC events (reweighting)

Strong dependence on photon-photon invariant mass

- Recent photon-induced reactions measurements in pp collisions at CMS:
 - 1) Exclusive $\gamma\gamma \rightarrow \mu\mu$ production in pp collisions at Vs = 7 TeV; JHEP 1201 (2012) 052. -> 2010 data, 40 pb⁻¹; pp \rightarrow pp $\mu^+\mu^-$ cross section
 - 2) Search for exclusive or semi-exclusive photon pair production and observation of exclusive and semi-exclusive electron pair production; JHEP 1211 (2012) 080.
 - 3) Study of exclusive γγ production of W(+)W(-) at vs = 7 TeV and constraints on anomalous quartic gauge couplings; JHEP 1307 (2013) 116.
 - 2011 data, 5 fb⁻¹; Best limits on anomalous couplings (QGC) are obtained
 - Benchmark using $\gamma\gamma \rightarrow \mu\mu$ events



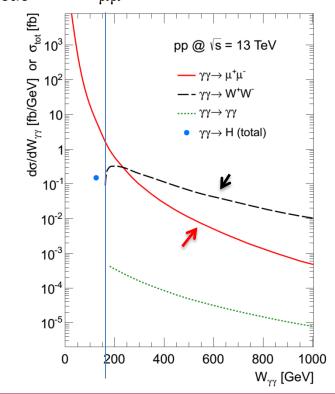
• Exclusive $\gamma\gamma \rightarrow \mu\mu$ production in pp collisions at $\sqrt{s} = 7$ TeV


- Kinematic region: $M_{\mu\mu}$ > 11.5 GeV, pT_{μ} > 4 GeV and $|\eta_{\mu}|$ < 2.1
- Log-likelihood fit on exclusive and semi-exclusive yields (LPAIR) to get the exclusive cross section
- Cross section:

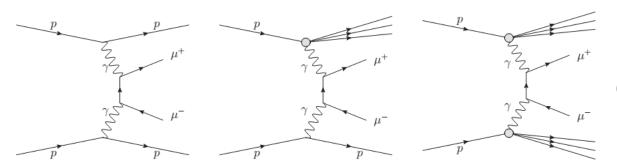
 $\sigma_{pp (\gamma\gamma) \rightarrow pp \mu\mu}$ = 3.38 ± 0.58 (stat.) ± 0.16 (syst.) ± 0.14 (lumi.) pb

- Data-theory (LPAIR) signal ratio:
 0.83 ± 0.15
- Our predictions for proton survival factor:
 S² = 0.84 (M_{μμ} > 11.5 GeV, |y_{μμ}| < 2.1)

- Study of exclusive γγ production of W(+)W(-) at Vs = 7 TeV and constraints on anomalous quartic gauge couplings
- $\gamma\gamma \rightarrow \mu\mu$ as a benchmark for exclusivity selection validation
- Kinematic region: $M_{\mu\mu} > 40$ GeV, $pT_{\mu} > 20$ GeV and $|\eta_{\mu}| < 2.4$
- Observation: Expected exclusive yield is 10% smaller in data -> $S^2 \approx 0.75$ in this kinematic region Region Data Simulation

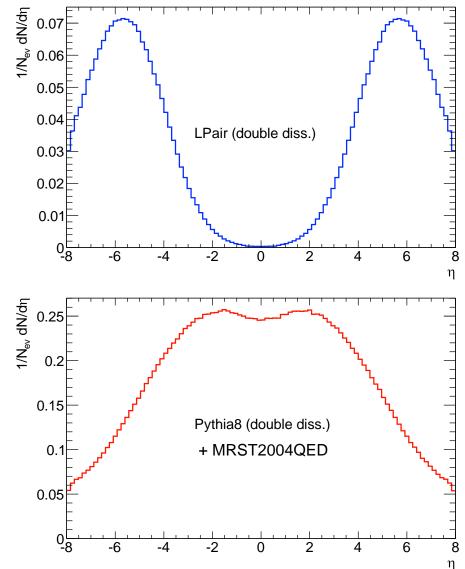


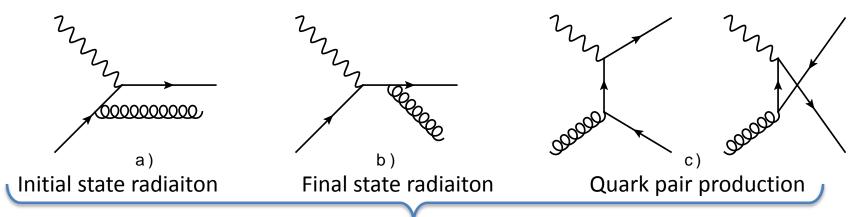
300


m(μμ) [GeV]

Data/Simulation

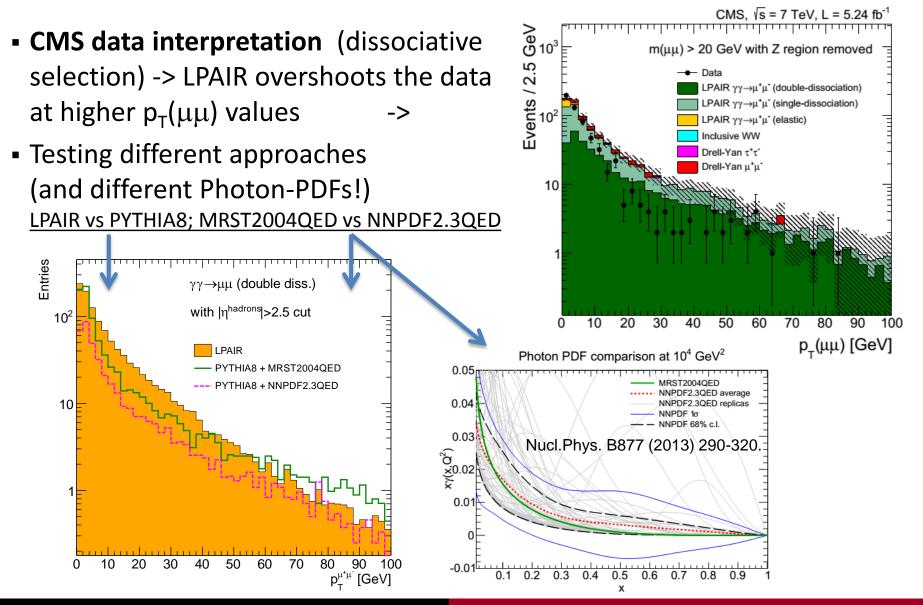
- Study of exclusive γγ production of W(+)W(-) at Vs = 7 TeV and constraints on anomalous quartic gauge couplings
- γγ → μμ events used to determine an effective, observed "luminosity" of two-photon interactions at high energies relevant for W-pair production
 -> simply taking the ratio (Data - MC_{DY})/MC_{elastic} for M_{μμ} > 160 GeV
- Not a clean way to proceed... Some reasons:
 - Elementary cross section shape dσ/dW_{γγ} is very different for γγ → μμ and γγ → WW
 -> Proton survival factor is different, even if the same kinematic domain is studied
 - Different lepton kinematic distributions for elastic and dissociative reactions
 - Different contributions from NLO effects (e.g. QED FSR)


A family of interactions, including photon-proton inelastic reactions


(Very simplified scheme...)

- Two (alternative) ways of description
 - Photon-proton inelastic Form Factor (e.g. Suri-Yenni FF in LPAIR + JETSET)
 - proton dissociation -> forward resonance(s) production
 - adequate for small Q²
 - does not guarantee correct dependence at large Q²
 - Photon-PDF approach (like NNPDF2.3QED incorporated with PYTHIA8)
 - should be relevant for higher Q²
 - PYTHIA recombination scheme used for forward resonance production

- Pseudorapidity distribution of particles produced in the proton(s) fragmentation
- LPAIR + Inelastic FF ->
 - Δ⁺ (Δ⁺⁺) resonances produced for the low-mass system
 ->low multiplicity fwd states
 - For higher masses, multiple resonance production
- PYTHIA8 + Photon-PDF ->
 - Includes also $\gamma q/\overline{q}$ interactions +O(α_s) corrections
 - Production of particles also in the central direction


O(α_s) corrections to the γq → q process should have to be also considered

≈ 40% contribution to the double-dissociative cross section (PYTHIA8)

- Enhancement of the cross section (diss part)
- Increased underlying event activity in the central detector
- Total cross section comparison: ($M_{\mu\mu}$ > 20 GeV, p_T^{μ} > 10 GeV, $|\eta_{\mu}|$ < 2.5)

Generator	LPAIR (s-diss)	LPAIR (d-diss)	PYTHIA 8 (d-diss)	= + MRST2004QED
Cross-section	0.87 pb	1.02 pb	7.72 pb	_

17

Conclusions

- There is a strong physics case of pp $(\gamma\gamma) \rightarrow p^{(*)} p^{(*)} X$ interactions
- (Usually) simpler final states + small theory (QED) uncertainties
 - A crucial role of proton finite size effects: some advances in photonphoton interactions have been made
 - In itself (EWK) and to reach searches domains
 - With a difficult and subtle problem of what is the radius of proton (or HI)
 - Direct application: Luminosity determination using exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ reactions
 - However, smaller cross-sections for higher invariant masses
 - -> <u>HI collisions? The trade off between pp and PbPb</u>: the maximum energy of photons: γ/R favors pp for high mass objects, while the Z⁴ factor in PbPb cross section reaches 4.5e7...
- Photon-induced reactions as a source of background for many EWK analyses (low, high-mass DY, φ*/pT(Z) measurement, ...)
 - A clear need for precise photon-PDF (currently, O(50%) uncertainty in NNPDF2.3QED...)

Backup

Projections for $\sqrt{s} = 13$ TeV

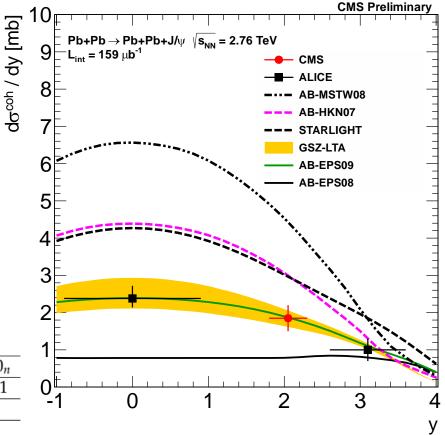
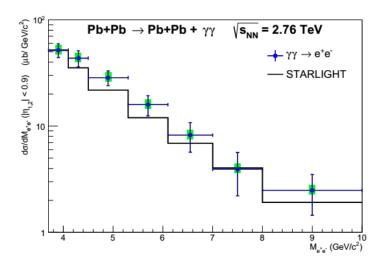
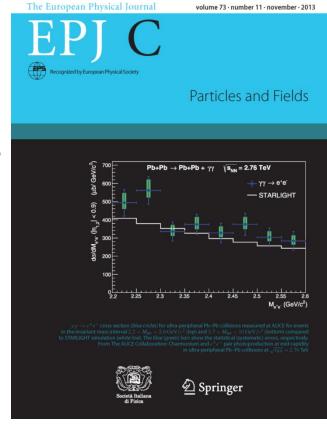

Process	σ_{tot}	$\sigma_{tot} \otimes S_{\gamma\gamma}^2$	$< S_{\gamma\gamma}^2 >$
$\gamma\gamma \to H \ (M_H = 125 \ {\rm GeV})$	$0.15~{\rm fb}$	$0.11~{\rm fb}$	0.74
$\gamma\gamma \to \mu^+\mu^- \ (W_{\gamma\gamma} > 40 \ {\rm GeV})$	12 pb	10 pb	0.8
$\gamma \gamma \to \mu^+ \mu^- \ (W_{\gamma \gamma} > 160 \text{ GeV})$	$36~{\rm fb}$	25 fb	0.7
$\gamma\gamma \to W^+W^-$	82 fb	53 fb	0.65
$\gamma \gamma \rightarrow \gamma \gamma ~(W_{\gamma \gamma} > 200 \text{ GeV})$	$0.06~{\rm fb}$	$0.04~{\rm fb}$	0.64

Table 1: Comparison of total cross sections at $\sqrt{s} = 13$ TeV for different processes $pp(\gamma\gamma) \rightarrow ppX$ with and without proton survival factor applied.

The case of HI collisions

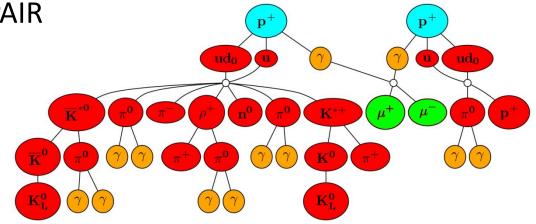
- + Cross section for **photon-nucleus** collisions is proportional to Z²
- The coupling $V\alpha_{EM} \rightarrow ZV\alpha_{EM}$ (higher-order terms become important)
 - Exclusive J/Psi in Pb-Pb:
 - Eur. Phys. J. C 73 (2013) 2617 (ALICE "barrel" J/Psi + $\gamma\gamma \rightarrow ee$)
 - Phys. Lett. B 718 (2013) 1273 (ALICE "forward" J/Psi)
 - CMS-PAS-HIN-12-009 (CMS coherent J/Psi + neutrons)
 - Data favors models that incorporate nuclear shadowing
 - Accompanied neutron(s) emission
 - -> even more precise tests

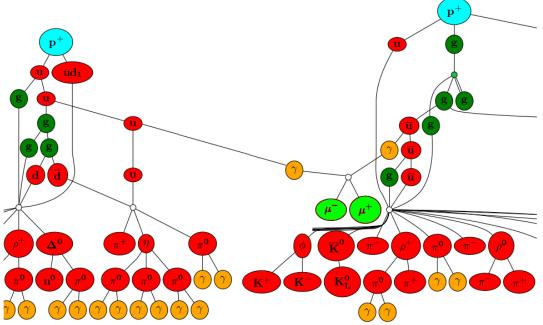

J/ ψ with $p_{\rm T} < 0.15 {\rm GeV}/c$	$X_n X_n / X_n 0_n$	$1_n 0_n / X_n 0_n$	$1_n 1_n / X_n 0_n$
Data	$0.36 {\pm} 0.04$	$0.26 {\pm} 0.03$	$0.03 {\pm} 0.01$
STARLIGHT	0.37	N/A	0.02
GSZ	0.32	0.30	0.02



16 December 2014

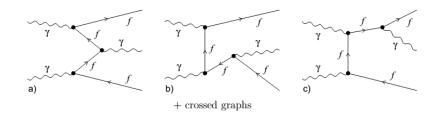
The case of HI collisions

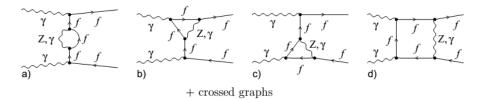

- + Cross section for **photon-photon** collisions is proportional to **Z**⁴
- Maximum photon energy approximately given by γ/b_{min}
 - -> Maximum W_{vv} ≈ 160 GeV for Pb-Pb at Vs_{NN} = 5.5 TeV
 - -> Maximum $W_{yy} \approx 2 \text{ TeV}$ for p-p at $\sqrt{s} = 14 \text{ TeV}$
 - $\gamma\gamma \rightarrow ee \text{ from ALICE}$
 - Data ≈ 20% above the STARLIGHT predictions
 - -> higher order terms in α_{EM} are important here



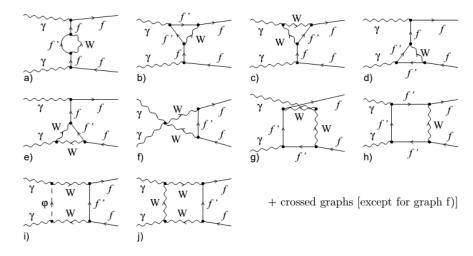
PYTHIA8 vs LPAIR (d-diss)

- Double-diss PYTHIA8 vs LPAIR
- LPAIR: only γ-p inelastic processes ->
- Production of forward particles

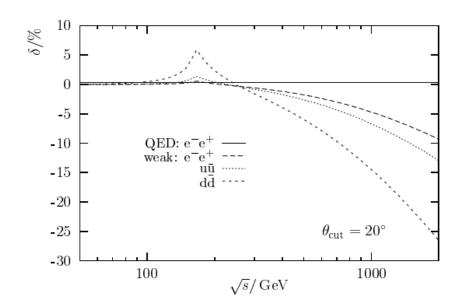

- PYTHIA8: x-s dominant by the γ - q/\overline{q} interactions + O(α_s) corrections ->
- Particles also visible in the central part of the detector


$\gamma\gamma \rightarrow |^+|^-$ NLO corrections

- A. Denner and S. Dittmaier, Eur. Phys. J. C9 (1999) 425-435.
- The O(α) corrections (QED + weak) to γγ → ff in the standard model are calculated for light fermions
- Results are provided as a function of √s for photon-photon system


Diagrams for photon bremsstrahlung:

Diagrams with virtual Z-boson or photon exchange:



Diagrams with virtual W-boson exchange:

$\gamma\gamma \rightarrow |^+|^-$ NLO corrections

- The cancellation of all potentially large QED corrections such as αln(m²/s)/π implies that the resulting QED correction is of the order of O(α/π), i.e., of the order of several per mille "
- "The weak corrections stay below 0.05% for energies below 100 GeV "

\sqrt{s}/GeV	$ heta_{\mathrm{cut}}$	$\sigma_{\rm Born}^{\rm e^-e^+}/{\rm pb}$	$\delta^{\mathrm{e^-e^+}}_{\mathrm{QED}}/\%$	$\delta_{\rm weak}^{{\rm e}^-{\rm e}^+}/\%$
10	5°	13722	1.30	0.00
	10°	10130	0.74	0.00
	20°	6595.2	0.33	0.00
	40°	3270.9	-0.02	0.00
100	5°	137.22	1.30	0.02
	10°	101.30	0.74	0.02
	20°	65.952	0.33	0.03
	40°	32.709	-0.02	0.05
500	5°	5.4889	1.30	-0.97
	10°	4.0520	0.74	-1.29
	20°	2.6381	0.33	-1.78
	40°	1.3084	-0.02	-2.47