

Probing $\gamma\gamma XX$ anomalous gauge couplings with proton tagging at the LHC

IV Workshop on QCD and Diffraction at the LHC

Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Royon¹

¹CEA Saclay - Irfu/SPP

C. Royon, O. Kepka, Phys. Rev. D 78 (2008)

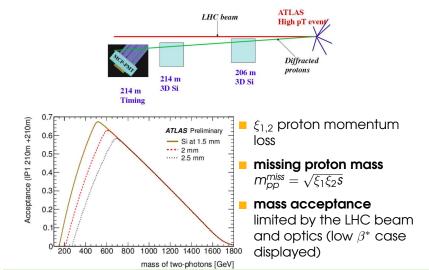
December, 16th 2014

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys. Rev. D 89 (2014)

S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, arXiv:1411.6629

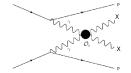
Summary of the presentation


Motivations and description of the proposed measurements

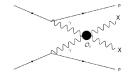
What and why are we measuring?

- 2 The $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings cases in short
- 3 The $\gamma\gamma\gamma\gamma$ couplings case in details
- Conclusion and plans

Forward proton detectors at the LHC

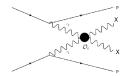

The ATLAS Forward Physics (AFP) and the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) upgrade projects

Exclusive production via photon induced processes



- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → full reconstructed kinematics
- Comparison between the forward and the central particles kinematics → strong background reduction

Exclusive production via photon induced processes



- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → full reconstructed kinematics
- Comparison between the forward and the central particles kinematics → strong background reduction
- $\gamma\gamma$, WW, ZZ final states ideal to study anomalous quartic gauge couplings (aQGC)
- aQGC important for various physics topics: electroweak symmetry breaking, extra-dimension models, ...

Exclusive production via photon induced processes

- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → full reconstructed kinematics
- Comparison between the forward and the central particles kinematics → strong background reduction
- $\gamma\gamma$, WW, ZZ final states ideal to study anomalous quartic gauge couplings (aQGC)
- aQGC important for various physics topics: electroweak symmetry breaking, extra-dimension models, ...
- Drawback: smaller cross-sections (intact protons must be in the acceptance of the forward detectors)

Summary of the presentation

- Motivations and description of the proposed measurements
- 2 The $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings cases in short Brief overview of the two studies published in 2008 and 2010. Comparison on the predicted sensitivies with the latest measurements. (they do not use proton tagging)
- The $\gamma\gamma\gamma\gamma$ couplings case in details
- Conclusion and plans

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous couplings

C. Royon, O. Kepka, Phys. Rev. D **78** (2008) E. Chapon, C. Royon, O. Kepka, Phys. Rev. D **81** (2010)

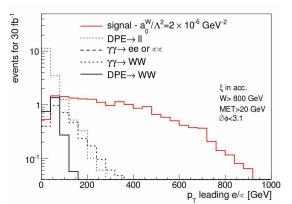
Effective Field Theory (EFT): dimension 6 operators parametrized with 4 different parameters

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

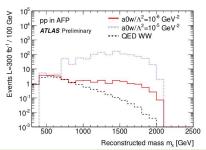
- Only the leptonic decays of the heavy bosons are considered as final states (clean signal experimentally)
- Background considered: ND WW/ZZ production, di-lepton photoproduction, DPE dilepton, DPE WW/ZZ
- Generation and simulation performed with the Forward Physics MC generator (FPMC) interfaced with the fast simulation of the ATLAS detector (ATLFast++ package)

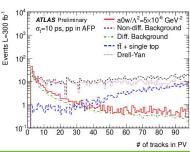

ATLAS full simulation also performed to probe pile-up effects and gave similar results

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous signal

→ ATLAS **fast** simulation study

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)





Dealing with pile-up at the LHC

→ ATLAS **full** simulation study

- The LHC is operated at very high luminosity → high event multiplicites in a single bunch-crossing (pile-up)
- Use of the forward timing detectors to constrain the vertex z-position of the interaction dependance on the timing detectors resolution
- Cut on the number of tracks fitted to the primary vertex very efficient to remove remaining pile up after requesting a high mass object to be produced

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ sensitivities

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

Limits from LEP (OPAL), $\simeq 0.1$ -0.2 GeV⁻²

Phys. Rev. D 70 (2004) 032005

(for each coupling)

Recent papers from DØ for $WW\gamma\gamma$ with reach of the order of 10^{-2} - 10^{-3} GeV⁻² Phys. Rev. D **88** (2013) 012005

Recent papers from CMS for $WW\gamma\gamma$ with reach of the order of 10^{-4} - 10^{-5} GeV⁻² Phys. Rev. D **90** (2014) 032008

■ Sensitivities predictions with AFP (30 and 200 fb⁻¹) reach up to 10^{-6} GeV⁻², improvement up to a factor $\simeq 100$

		1	imits [10	6 GeV ⁻²]		1	imits [10 ⁻	-6 GeV-2]	
	form factor		$\left a_C^W/\Lambda^2\right $	$\left a_0^Z/\Lambda^2\right $	$\left a_C^Z/\Lambda^2\right $	$\left \left a_0^W/\Lambda^2 \right \right $	$\left a_C^W/\Lambda^2\right $	$\left a_0^Z/\Lambda^2\right $	$\left a_C^Z/\Lambda^2\right $
95% c.1 {	$\Lambda_{cut} = \infty$	1.2	4.2	2.8	10	0.7	2.4	1.1	4.1
95% 6.1 {	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{TeV}$	2.6	9.4	6.4	24	1.4	5.2	2.5	9.2
3σ evidence {	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	1.6	5.8	4.0	14	0.85	3.0	1.6	5.7
30 evidence \	$\Lambda_{cut} = 2\mathrm{TeV}$	3.6	13	9.0	34	1.8	6.7	3.5	13
5σ discovery $\left\{\right.$	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	2.3	9.7	6.2	23	1.2	4.3	4.1	8.9
so anscorery ($\Lambda_{cut} = 2 \mathrm{TeV}$	5.4	20	14	52	2.7	9.6	5.5	20

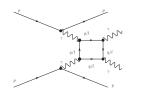
Summary of the presentation

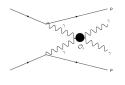
- Motivations and description of the proposed measurements
- 2 The $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings cases in short
- 3 The $\gamma\gamma\gamma\gamma$ couplings case in details Review of the study published in 2014 and latest developments. Ideas for further developments.
 - S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys. Rev. D 89 (2014)
 - S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, arXiv:1411.6629
- Conclusion and plans

$\gamma\gamma\gamma\gamma$ SM and anomalous couplings

- Direct coupling absent from the SM Loop induced production strongly suppressed in the SM, measurable at the LHC in Pb-Pb (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- Never measured in collider experiments

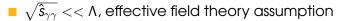
$\gamma\gamma\gamma\gamma$ SM and anomalous couplings





- Direct coupling absent from the SM Loop induced production strongly suppressed in the SM, measurable at the LHC in Pb-Pb (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- Never measured in collider experiments
- New Physics search \rightarrow high integrated luminosity required (so high pile-up!) 300 fb⁻¹ of data expected at the LHC at $\sqrt{s} = 14$ TeV with $\mu > 50$
- **Huge background** if only 2 high energy γ required (SM $\gamma\gamma$ production + fakes from electrons and jets)

$\gamma\gamma\gamma\gamma$ SM and anomalous couplings

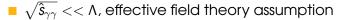

- Direct coupling absent from the SM

 Loop induced production strongly suppressed in the SM, measurable at the LHC in Pb-Pb (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- Never measured in collider experiments
- New Physics search \rightarrow high integrated luminosity required (so high pile-up!) 300 fb⁻¹ of data expected at the LHC at $\sqrt{s} = 14$ TeV with $\mu > 50$
- **Huge background** if only 2 high energy γ required (SM $\gamma\gamma$ production + fakes from electrons and jets)
- Additional requirement of two intact protons with forward detectors highly suppresses the background (All particles at the final state are detected)

Operators of the anomalous $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

S. Fichet and G. von Gersdorff, JHEP 1403 (2014) 102


$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

Operators of the anomalous $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

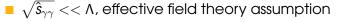
S. Fichet and G. von Gersdorff, JHEP 1403 (2014) 102

$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$
 (dimension 8)

For low new physics masses, threshold effect to be taken into account → use of a form factor (f.f.) at the amplitude level

We use
$$f.f=rac{1}{1+(rac{\hat{s}_{\gamma\gamma}}{1+f})^2}$$
 with $\Lambda'=1$ TeV $\simeq\sqrt{\hat{s}_{\gamma\gamma,max}}/2$

(Unitarity requires $\zeta_i < 10^{-10} \text{ GeV}^{-4}$, $\simeq 10^4$ higher than our sensitivity limit, so we are safe on this side)



Operators of the anomalous $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

S. Fichet and G. von Gersdorff, JHEP 1403 (2014) 102

$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

For low new physics masses, threshold effect to be taken into account → use of a form factor (f.f.) at the amplitude level

We use
$$f.f=rac{1}{1+(rac{\hat{s}_{\gamma\gamma}}{1+\hat{s}_{\gamma\gamma}})^2}$$
 with $\Lambda'=1$ TeV $\simeq\sqrt{\hat{s}_{\gamma\gamma,max}}/2$

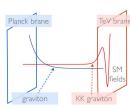
(Unitarity requires $\zeta_i < 10^{-10}~\text{GeV}^{-4}$, $\simeq 10^4~\text{higher than our sensitivity limit, so we are safe on this side)}$

- The signal showed in the plots of this presentation are for a signal with $\zeta_1 \geq 0$ and $\zeta_2 = 0$ and with f.f. ζ_1 and ζ_2 have a very similar angular behaviour
- A table of final sensitivities for both ζ_1 and ζ_2 , with and without f.f are given at the end of the presentation

New physics contributions to 4γ couplings

New charged particles via loops

- Effective coupling only depends on the mass, charge and spin : $\zeta_i^{\gamma} \propto c_i^s Q^4 m^{-4}$
- Example: top partners


New neutral particles at tree level

- Effective coupling depends on mass, spin and the non-renormalizable $\gamma\gamma X$ coupling $\zeta_i^{\gamma} \propto b_i^s f^{-2} m^{-2}$
- Example: KK gravitons, dilaton (warped extra-dimension)

if coupling \simeq TeV and $m_{K\!K} \simeq$ few TeV, $\zeta_i^\gamma \simeq 10^{-14}\text{-}10^{-13}$ GeV $^{-4}$ achievable, which we are sensitive

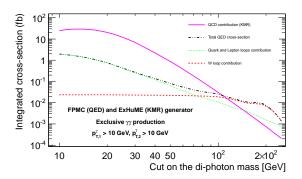
$\gamma\gamma\gamma\gamma$ phenomenological study

- \blacksquare 4 γ aQGC operators implemented in the **FPMC generator**
- Simulation of the detector effects
- Pile-up simulation with Pythia8 minimum bias events
- Background estimation, expected to be very small thanks to the fully constrained kinematics
- Sensitivities calculation: significance $\sigma = S / \sqrt{B}$
- 2 scenarios were considered
 - LHC full stat (ATLAS or CMS): 300 fb⁻¹, $<\mu>=50$
 - HL-LHC (ATLAS): 3000 fb⁻¹, $<\mu>=200$

$\gamma\gamma\gamma\gamma$ phenomenological study

- \blacksquare 4 γ aQGC operators implemented in the **FPMC generator**
- Simulation of the detector effects
- Pile-up simulation with Pythia8 minimum bias events
- Background estimation, expected to be very small thanks to the fully constrained kinematics
- Sensitivities calculation: significance $\sigma = S / \sqrt{B}$
- 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb⁻¹, $<\mu>=50$
 - HL-LHC (ATLAS) : 3000 fb⁻¹, $<\mu>=200$
- Implementation of generic new heavy-charged fermions/vectors contributions to the 4γ couplings in FPMC (full amplitude calculation)

$\gamma\gamma\gamma\gamma$ phenomenological study


- \blacksquare 4 γ aQGC operators implemented in the **FPMC generator**
- Simulation of the detector effects
- Pile-up simulation with Pythia8 minimum bias events
- Background estimation, expected to be very small thanks to the fully constrained kinematics
- Sensitivities calculation: significance $\sigma = S / \sqrt{B}$
- 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb⁻¹, $<\mu>=50$
 - HL-LHC (ATLAS) : 3000 fb⁻¹, $<\mu>=200$
- Implementation of generic new heavy-charged fermions/vectors contributions to the 4γ couplings in FPMC (full amplitude calculation)
- **Extra:** update of the exclusive $\gamma\gamma$ SM production (FPMC) W loop contribution and fermion masses included

SM exclusive $\gamma\gamma$ production

- Mass of the fermions, W loop contribution and related interference taken into account in the QED generation
- W loop non negligible for $m_{\gamma\gamma} > 70$ GeV
- \blacksquare Irreducible background for $\gamma\gamma\gamma\gamma$ new physics searches Needs to be simulated accurately

SM exclusive $\gamma\gamma$ production: possible measurement at the LHC?

Cut / Process	QCD Exclusive (KMR)	QED Fermion loop	W loop	
$m_{\gamma\gamma} > 10 \text{GeV,} p_{T1,2} > 5 \text{GeV}$	372.1 fb	4.71 fb	0.024 fb	
$m_{\gamma\gamma} > 10 \text{GeV}, p_{T1,2} > 10 \text{GeV}$	24.2 fb	1.87 fb	0.023 fb	
$m_{\gamma\gamma} > 20 \text{GeV,} p_{71,2} > 10 \text{GeV}$	20.4 fb	0.75 fb	0.023 fb	
$m_{\gamma\gamma} > 50 \text{GeV}, p_{71,2} > 10 \text{GeV}$	0.87 fb	0.061 fb	0.022 fb	
$m_{\gamma\gamma} > 100 \text{GeV}, p_{71.2} > 10 \text{GeV}$	0.030 fb	0.015 fb	0.019 fb	
$m_{\gamma\gamma} > 200 \text{GeV}, p_{71,2} > 10 \text{GeV}$	7.4e-4 fb	1.5·10 ⁻³ fb	9.7e-3 fb	
$m_{\gamma\gamma} > 500 \text{GeV,} p_{71,2} > 10 \text{GeV}$	3.2e-6 fb	$< 5.0 \cdot 10^{-4} \text{ fb}$	1.4e-3 fb	

Table: Integrated cross sections of the different SM exclusive di-photon production processes at the LHC at $\sqrt{s} = 14$ TeV for various requirements on the di-photon mass ($m_{\gamma\gamma}$) and photon transverse momenta ($p_{71.2}$).

- No mass acceptance to perform a measurement at low β^* with proton tagging
- Measurement of KMR production possible at high β^* ($\simeq 0.1 \text{ fb}^{-1}$ luminosity expected)
- It will be required to go at p_{τ}^{γ} down to 5 GeV
- Rapidity gaps detection at the trigger level required?

Modelisation of the detector effects

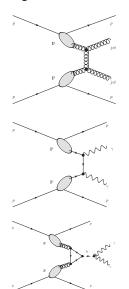
Detector effects (acceptance/efficiency) must be taken into account to get realistic predictions

Modelisation of the detector effects

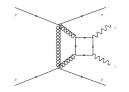
- Estimation of γ conversion rates (η function), fake photon rates, reconstruction efficiency (p_T functions) from ECFA ATLAS studies
- **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ to mimic detector resolution
- Requirement of at least one converted photon → constraint on the γ vertex, possibility to combine with forward proton timing measurement
- Selection on high p_T^{γ} , high diphoton mass, $\Delta \phi_{\gamma\gamma}$, match proton missing/ $\gamma\gamma$ mass (summary \$17)

Modelisation of the detector effects

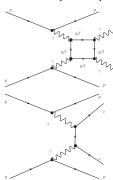
- Analysis performed at particle level but taking into account dominant detector effects
 - Estimation of γ conversion rates (η function), fake photon rates, reconstruction efficiency (p_T functions) from ECFA ATLAS studies
 - **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ to mimic detector resolution
 - Requirement of at least one converted photon → constraint on the γ vertex, possibility to combine with forward proton timing measurement
 - Selection on high p_I^{γ} , high diphoton mass, $\Delta \phi_{\gamma\gamma}$, match proton missing/ $\gamma\gamma$ mass (summary S17)


Final outputs

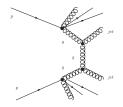
- 5σ and 95% C.L sensitivities on the $\gamma\gamma\gamma\gamma$ couplings at the LHC EFT, valid for m>2(1) TeV for tree-level (loop-induced) production
- M-Q exclusion plane for generic new fermions/vectors at the LHC full amplitude calculation, valid for all masses



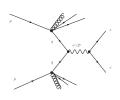
Backgrounds (FPMC, ExHuME)



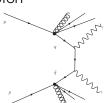
Exclusive QCD (ExHuME)



Exclusive QED (FPMC)



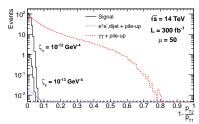
Pile-up backgrounds (HERWIG 6.5)



Diphoton


+ intact protons from pile up generated from minimum bias events (Pythia 8)

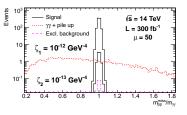
transported to the forward detectors through the LHC magnets with FPTracker/MADX (software developed for the LHC)

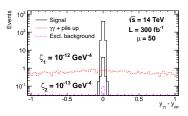

Mass and p_T balance distribution of signal and backgrounds

smearing, fakes and reconstruction factors, ≥ 1 converted γ required

$$0.015 < \xi < 0.15, |\eta| < 2.37, \ p_{T1/2}^{\gamma} > 50 \ {
m GeV} \ {
m ONLY}$$

if we request also $m_{\gamma\gamma} >$ 600 GeV and $p_{71,2} >$ 200, 100 GeV


- By requesting $m_{\gamma\gamma} > 600$ GeV (left), **Only pile-up** backgrounds remain
- ho_T ratio distribution after ho_T and $m_{\gamma\gamma}$ cuts (right) provides another efficient cut **(exclusive process)**
- $\Delta \phi > \Pi$ -0.01 also applied in the final selection

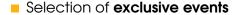


Use of the forward detector ξ measurement

smearing, fakes and reconstruction factors, \geq 1 converted γ required

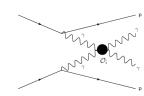
0.015 <
$$\xi$$
 < 0.15, $|\eta|$ < 2.37, $m_{\gamma\gamma}$ > 600 GeV, $p_{71,2}$ > 200, 100 GeV, p_{7} ratio > 0.95, $\Delta\phi$ > Π -0.01

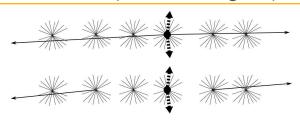
- Missing proton mass $\sqrt{\xi_1\xi_2s}$ matches $m_{\gamma\gamma}$ for the signal A mass window of 3% (\simeq resolution) is required in the event selection
- Same effect with **rapidity variables** $|y_{\gamma\gamma} y_{pp}| < 0.03$ with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_2}))$ is applied
- The small width of the signal distributions is due to the smearing applied to simulate detector effects


Very efficient cuts due to very good ξ resolution, **absolutely needed in order** to suppress the pile-up background

Event selection: summary

Kinematic cuts


- $p_{T1}^{\gamma} > 200 \text{ GeV}, p_{T2}^{\gamma} > 100 \text{ GeV}$
- $m_{\gamma\gamma} > 600 \text{ GeV}$


- $\frac{p_{12}^{\gamma}}{p_{11}^{\gamma}} > 0.95$
- $|\Delta\phi_{\gamma\gamma}| > \pi 0.01$

- $m_{pp}^{miss} = m_{\gamma\gamma} \pm 3\%$
- $|y_{\gamma\gamma} y_{pp}| < 0.03$
 - with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_2}))$
- Possible proton timing measurement with forward detectors (Not used)

Possible extra-cut: proton timing requirement

- 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters
- Requirement of 1 converted $\gamma \rightarrow <$ 1 mm resolution on the γ vertex
- Resolution on the vertex position driven by forward timing detectors
- Matching the two proton and photon vertices provide an additional background rejection factor of $\simeq 40$ at $\mu = 50$
- No need to use for this study, **robustness of the** $\gamma\gamma\gamma\gamma$ **analysis** \rightarrow needed for $WW\gamma\gamma$ (and $ZZ\gamma\gamma$)!
- can be used for unknown backgrounds (beam-induced)

Expected events for S=1, Q_{eff} =4, m=340 GeV (ζ_1^{γ} = 2 10⁻¹³·GeV⁻⁴)

 $\sqrt{s} = 14$ TeV, L = 300 fb⁻¹, at least one converted γ

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, \\ p_{\text{T1},(2)} > 200, (100) \text{GeV})$	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{GeV}$	128.3	34.9 (371.6)	0.20	0	0.2	1023
$(\rho_{\rm T2}/\rho_{\rm T1} > 0.95, \ \Delta\phi > \pi - 0.01)$	128.3	34.9 (371.4)	0.19	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$ $ y_{\gamma \gamma} - y_{pp} < 0.03$	122.0 119.1	32.9 (350.2) 31.8 (338.5)	0.18 0.18	0 0	0 0	2.8 0

Very high signal selection efficiency

Signal increased by a factor 3-4 when relaxing the >1 conv. photon requirement

(the di-photon vertex not identified accurately anymore from the central detector)

Expected events for S=1, Q_{eff} =4, m=340 GeV (ζ_1^{γ} = 2 10⁻¹³·GeV⁻⁴)

 $\sqrt{s} = 14$ TeV, L = 300 fb⁻¹, at least one converted γ

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, \\ p_{\text{T1},(2)} > 200, (100) \text{GeV})$	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \mathrm{GeV}$	128.3	34.9 (371.6)	0.20	0	0.2	1023
$(p_{\text{T2}}/p_{\text{T1}} > 0.95, \ \Delta\phi > \pi - 0.01)$	128.3	34.9 (371.4)	0.19	0	0	80.2
$ \sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\% \gamma_{\gamma \gamma} - \gamma_{pp} < 0.03 $	122.0 119.1	32.9 (350.2) 31.8 (338.5)	0.18 0.18	0 0	0 0	2.8 0

Very high signal selection efficiency

Signal increased by a factor 3-4 when relaxing the >1 conv. photon requirement

(the di-photon vertex not identified accurately anymore from the central detector)

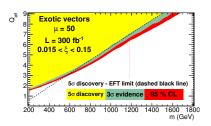
Background completely suppressed thanks to forward detectors ξ measurement

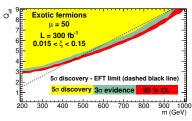
- Very high significance per observed event
- < 5 background events expected at μ = 200 Robust analysis, good background control
- proton time-of-flight **not used** Possible additional rejection factor of 40 at μ = 50

Final discovery (5 σ) and exclusion (95% CL) sensitivities on ζ_1 and ζ_2

EFT approach: S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys. Rev. D **89** (2014).

Update of the EFT + full amplitude calculation: S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, arXiv:1411.6629.

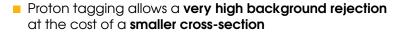

Luminosity	300 fb ⁻¹	300 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹
pile-up (μ)	50	50	50	200
coupling	\geq 1 conv. γ	\geq 1 conv. γ	all γ	all γ
(GeV ⁻⁴)	5 σ	95% CL	95% CL	95% CL
ζ_1 f.f.	8 · 10 ⁻¹⁴	5 · 10 ⁻¹⁴	3 · 10 ⁻¹⁴	2.5 · 10 ⁻¹⁴
ζ_1 no f.f.	2.5 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴	9 · 10 ⁻¹⁵	7 · 10 ⁻¹⁵
ζ_2 f.f.	2 · 10 ⁻¹³	1 · 10 ⁻¹³	6 · 10 ⁻¹⁴	4.5 · 10 ⁻¹⁴
ζ_2 no f.f.	5 · 10 ⁻¹⁴	4 · 10 ⁻¹⁴	2 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴


- A large panel of extra-dimension models can be probed in the multi-TeV range
- The form factor is not needed for any new physics scale beyond ~ 2 TeV because of the forward detector acceptance (see slide 9)

Full amplitude computation for generic heavy charged fermions/vectors contributions

œ

- The existence of new heavy charged particles will enhance the $\gamma\gamma\gamma\gamma$ coupling at high mass via loops
- This enhancement can be parametrized by only the mass and the effective charge Q_{eff} = Q.N^{1/4}, N multiplicity (= nb of values taken by the new degree of freedom)
- Generic full amplitude implementation for fermions and vectors implemented in FPMC

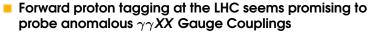


Summary of the presentation

- Motivations and description of the proposed measurements
- 2 The $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings cases in short
- The $\gamma\gamma\gamma\gamma$ couplings case in details
- Conclusion and plans

Where does proton tagging do better?

- A single observation has a high significance
- Ideal to probe small deviations from the Standard Model like aQGC
 ex: new charged particles via loops, ADD gravity effects, ...
- Interesting "subleading" constraints on resonances searches at tree level
 ex: new neutral particles at tree level
- Hard to be more quantitative: no $\gamma\gamma\gamma\gamma$ limits from collider experiments yet (with intact protons or not)
- We reach sensitivities allowing to probe directly a large class of new models
 - **Extra-dimensions:** KK gravitons, strongly-interacting heavy dilaton, ...
 - Strongly-interacting composite states, monopoles: generic searches of new heavy charged particles



Conclusion

- Forward proton tagging at the LHC seems promising to probe anomalous $\gamma\gamma XX$ Gauge Couplings
 - proton tagging associated with high energy object in the central detector allow to highly suppress the background
 - $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings sensitivity improvement by a factor up to 100 compared to latest the CMS measurement
 - $\gamma\gamma\gamma\gamma$ couplings: sensitivities around $10^{-13} 10^{-14}$ GeV⁻⁴, down to $7 \cdot 10^{-15}$ GeV⁻⁴ → allows to probe directly a large panel of new physics models in the multi-TeV range (KK gravitons, strongly-interacting heavy dilaton, ...) (no previous constraints from collider experiments)
- $\gamma\gamma\gamma\gamma$ couplings: a way to probe exotic heavy charged vectors/fermions in a completely model-independent way γ very interesting subleading constraints in addition to direct searches at the LHC

Conclusion

- proton tagging associated with high energy object in the central detector allow to highly suppress the background
- $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings sensitivity improvement by a factor up to 100 compared to latest the CMS measurement
- $\gamma\gamma\gamma\gamma$ couplings: sensitivities around $10^{-13} 10^{-14}$ GeV⁻⁴, down to $7 \cdot 10^{-15}$ GeV⁻⁴ → allows to probe directly a large panel of new physics models in the multi-TeV range (KK gravitons, strongly-interacting heavy dilaton, ...) (no previous constraints from collider experiments)
- $\gamma\gamma\gamma\gamma$ couplings: a way to probe exotic heavy charged vectors/fermions in a completely model-independent way \rightarrow very interesting subleading constraints in addition to direct searches at the LHC
- The cross-section of those potential new contributions seems to be very dependant on the spin value of the new particles → sensitivies to higher sping resonances under study (requires further theoretical developments)

Probing $\gamma\gamma XX$ anomalous gauge couplings with proton tagging at the LHC

Back-up

Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Rovon¹

¹CEA Saclay - Irfu/SPP

December, 16th 2014

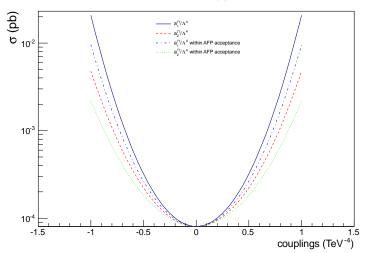
Effective Field Theory cross-section of the 4γ couplings (G. Von Gersdorff)

EFT of 4 Photon Interactions

- ▶ Focus on AAAA (AAZZ and AAWW see [Chapon et al '12])
- ▶ EFT for 4-photon interaction contains two dim-8 structures

$$\mathcal{L}_{4\gamma} = \zeta_1 \left(F_{\mu\nu} F^{\mu\nu} \right)^2 + \zeta_2 F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$

> Cross section has a simple form

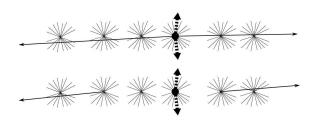

$$\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2 s} (s^2 + t^2 + st)^2 \left[48\zeta_1^2 + 40\zeta_1\zeta_2 + 11\zeta_2^2 \right]$$

- Unitarity breaks down for $\zeta s^2 \gtrsim 2\pi$
- ▶ Demanding unitarity for LHC energies $\Rightarrow \zeta_i \le 10^{-10} \text{GeV}^{-4}$
- ▶ In explicit models EFT breaks down before that!
- LHC sensitivities to ζ_i are ~10⁴⁻⁵ better than unitarity bound

Integrated total cross-section against couplings for anomalous $\gamma\gamma\gamma$ couplings

Form factor applied

Conversion, fake and efficiency reconstruction rates


- Inputs from the ECFA ATLAS studies
- **Photon conversion factors:** 15% in the barrel, 30% in the end-caps
- Photon and electron reconstruction efficiency: $Eff(p_T) = 0.76 1.98 \ exp^{\frac{-p_T}{16.1(GeV)}}$
- **Photon fake factors:** 1% for electron European Strategy studies
- **Fake photon p**_T **for jets:** gaussian draw (Mean=75%, σ =13%) on the jet p_T and use of

$$Eff_{fgke}(p_T) = 0.0093 \ exp^{\frac{-min(p_T, 200GeV)}{17.5(GeV)}}$$

almost no fake γ from jets at very high p_T

Forward detectors measurements

- **Proton missing mass** measurement with 3% resolution in case of double tag
- It matches the central $\gamma\gamma$ mass for signal. Can match as well for pile-up backgrounds as a statistical fluctuation
- **Double tag probability** from pile-up protons on the forward detectors (no missing mass requirement): 32% ($\mu = 50$) 66% ($\mu = 100$) 93% ($\mu = 200$)

Forward timing detectors: inefficiencies due to pile-up protons

			Ineff	Inefficiencies - 2mm bar detector						
Bar	1	2	3	4	5	6	7	8	9	10
$\mu = 50$	0.129	0.085	0.067	0.057	0.049	0.046	0.043	0.040	0.036	0.011
$\mu = 100$	0.185	0.122	0.097	0.082	0.071	0.066	0.062	0.057	0.051	0.016

M. Saimpert. Search for new states of matter wih the ATLAS experiment at the LHC, Master Thesis MINES ParisTech (2013)

The BSM amplitudes

- Loops of spin 0,1/2, 1 new electric particles contribute to 4γ . Because all vertices are fixed by gauge invariance, the NP contributions depend only on spin, mass and
- For example in the effective theory limit : $\zeta_i^{\gamma} = \alpha_{em}^2 Q^4 m^{-4} N c_{i,s}$

$$c_{1,s} = \begin{cases} \frac{1}{288} & s = 0 \\ -\frac{1}{36} & s = \frac{1}{2} \\ -\frac{5}{22} & s = 1 \end{cases}, \quad c_{2,s} = \begin{cases} \frac{1}{360} & s = 0 \\ \frac{7}{90} & s = \frac{1}{2} \\ \frac{27}{40} & s = 1 \end{cases}$$
 Scalar loops are smaller!

- Full amplitudes for fermions and vectors are now implemented in FPMC.
- Amplitudes get enhanced near the threshold

$\gamma\gamma\gamma\gamma$ full amplitude calculation (S. Fichet)

The SM background

- All electric particles of the SM contribute : leptons, quarks and W bosons
- The imaginary part of certain W helicity amplitudes grows with the energy, while the fermion ampliudes are finite. Background is dominated by the W loop
- When the new particle is real, it interfers with the W loop.
 - On-shell NP signal enhanced by SM interference
- All SM background amplitudes are implemented in FPMC (+ swiches to separately turn off them)
- One can check that SM fermions contributions are negligible.
 - Keeping only the W loop provides a huge gain of CPU time!