## Central Exclusive Single and Double Charmonium Production at LHCb



Ronan McNulty (UCD Dublin) on behalf of the LHCb collaboration



Workshop on QCD and Diffraction at the LHC 15-17 December 2014 Krakow

<u>Central Exclusive Production:</u> <u>Colourless propagators</u>



Related phenomena where the colourless object creates a particle

## The LHCb detector



Fully instrumented from  $2 < \eta < 5$ Trigger on muons > 400 MeV, and on J/ $\psi$  > 0 MeV. Average pp collisions per beam crossing of ~1.5

3

#### Photoproduction



- Test of QCD over wide  $W_{\gamma p}$  range
- Determination of gluon PDF
- Sensitivity to saturation / odderon



- Martin A D, Nockles C, Ryskin M and Teubner T 2008 Small x gluon from exclusive J/ψ production Phys. Lett. B 662 252 (arXiv:0709.4406)
- [2] Ryskin M G 1993 J/ψ electroproduction in LLA QCD Z. Phys. C 57 89
- [3] Ryskin M G, Roberts R G, Martin A D and Levin E M 1997 Diffractive J/ψ photoproduction as a probe of the gluon density Z. Phys. C 76 231 (arXiv:hep-ph/9511228)
- [4] S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive J/ψ and Υ production at HERA and the LHC, JHEP 1311 (2013) 085, arXiv:1307.7099.
   R. McNulty, Central Exclusive Production at LHCb

#### HERA vector meson photo-production results





Scatters in central region involve similar x partons.

Scatters in forward region are between one high-*x* and one low-*x* parton.

One region overlaps strongly with HERA.

One region is either unexplored or requires large DGLAP evolution from HERA.

7



 $J/\psi$ ,  $\chi_c$  in central region probe similar kinematics as HERA

Forward: x~10<sup>-5</sup> / x~10<sup>-2</sup>

8

#### Sensitivity to gluon pdf



S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive  $J/\psi$  and  $\Upsilon$  production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.

#### **Graphical Representation**



## VELO sub-detector



#### **Use of backwards tracks**



#### **Use of backwards tracks**





#### Invariant mass of exclusive muon pairs $(2 < \eta_{\mu} < 4.5)$



## Inelastic background



How to reject what you can't see?

...Regge theory suggests exponential dependence

 $d\sigma$  $\sim e^{bt}$ dt



## Inelastic background $\psi(2S)$





Good agreement with all theory estimates

#### Differential cross-sections J/ψ and ψ(2S)



NLO agrees better than LO

S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive  $J/\psi$  and  $\Upsilon$  production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.



HERA measured power-law:  $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \,\text{GeV})^{0.67} \,\text{nb}$ Use this for one cross-section on RHS – LHCb measure the other solution Photo-production cross-section





## p-Pb interactions



Photon flux proportional to Z<sup>2</sup>. Removes two-fold ambiguity



Photon flux proportional to  $Z^2$ . Removes two-fold ambiguity

Invariant mass of selected candidates



## Transverse momentum of candidates





Consistent picture of  $J/\psi$  photo-production across wide range of energies and colliders

#### Sensitivity to saturation effects



#### Sensitivity to saturation effects: $J/\psi \psi(2S)$



L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. D78 (2008) 014023, arXiv:0805.2113. M. B. Gay Ducati, M. T. Griep, and M. V. T. Machado, Exclusive photoproduction of  $J/\psi$  and  $\psi(2S)$  states in proton-proton collisions at the CERN LHC, arXiv:1305.4611.



Odderon identification requires good modelling of inelastic background

#### Future: Investigate other vector mesons



## **Dimuon Mass Spectrum**



Factor ~ \*100 data now available with 2011+2012 (~3fb<sup>-1</sup>)



## **Diphoton fusion**



- Precise QED
  prediction: 1% (?)
- Luminosity determination
- Triple gauge couplings (γγ->WW)

#### Invariant mass of exclusive muon pairs



## Exclusive dimuon (LHCb)



LPAIR simulation predicts shape for exclusive / single dissociation / double dissociation .

Background shape from data Signal shape from simulation.

Measured cross-section pµµp: 67 +- 19 pb

LPAIR (J. Vermaseren) 42 pb

#### J/ψJ/ψ production

Large literature for  $\gamma\gamma$ ->J/ $\psi$ J/ $\psi$ 

- I. F. Ginzburg, S. L. Panfil, and V. G. Serbo, Nucl. Phys. B296 (1988) 569.
- C.-F. Qiao, Phys. Rev. D64 (2001) 077503, arXiv:hep-ph/0104309
- V. P. Gonçalves and M. V. T. Machado, Eur. Phys. J. C28 (2003) 71, arXiv:hep-ph/0212178.
- A. Cisek, W. Schäfer, and A. Szczurek, Phys. Rev. C86 (2012) 014905, arXiv:1204.5381.
- S. Baranov et al., Eur. Phys. J. C73 (2013) 2335, arXiv:1208.5917.

Requires large photon flux:

Heavy ion collisions or Linear colliders



#### Double pomeron exchange



- Pure QCD process
- J<sup>PC</sup>=(even)<sup>++</sup>
- Glueballs
- Higgs
- J/ψJ/ψ (but no predictions one year ago)

Candidate for  $\chi_c$  decay to  $J/\psi + \gamma$ 



## Selected $\chi_{c0,1,2}$ candidates





#### Theory v experiment

 $\sigma_{\chi_{c0->\mu+\mu-\gamma}} = 9.3 +/- 2.2 +/- 3.5 +/- 1.8 \text{ pb}$   $\sigma_{\chi_{c1->\mu+\mu-\gamma}} = 16.4 +/- 5.3 +/- 5.8 +/- 3.2 \text{ pb}$  $\sigma_{\chi_{c2->\mu+\mu-\gamma}} = 28.0 +/- 5.4 +/- 9.7 +/- 5.4 \text{ pb}$ 

LHCb preliminary results with 2010 data

| χ <sub>0</sub> : 9.3 +- 4.5 pb | χ <sub>1</sub> : 16.4 +- 7.1 pb | χ <sub>2</sub> : 28.0 +-12.3 pb |  |
|--------------------------------|---------------------------------|---------------------------------|--|
| SuperChic: 14 pb               | 10 pb                           | 3 pb                            |  |

Large contribution due to  $X_{c0}$  as expected.

 $\chi_{c2}$  larger than expected but note that non-elastic background has been assumed same for each resonance. More precise data required.

Work ongoing to reconstruct in  $\pi\pi$ , KK channels

## Double J/ψ production



Final state theoretically studied in diphoton production (linear collider) but not through double pomeron exchange (hadron collider)

Sensitivity to higher mass states (tetraquarks,  $\eta_b$ ) Inclusive production has attracted much interest (DPS effects)



#### Select 4-muon exclusive events



Selection requirement:

Require precisely 4 tracks, at least three identified as muons



Background from inclusive production of  $J/\psi J/\psi$  small

Search for extra photons due to  $\chi_c -> J/\psi\gamma$ 

One candidate for  $\chi_{c0},$  which is also consistent with  $\psi(2s)$  No candidates for  $\chi_{c1}\,\chi_{c2}$ 

## <u>Cross-section</u> <u>results</u>

$$\begin{array}{ll} \sigma^{J/\psi\,J/\psi} &= 58 \pm 10({\rm stat}) \pm 6({\rm syst})\,{\rm pb}, \\ \sigma^{J/\psi\,\psi(2S)} &= 63^{+27}_{-18}({\rm stat}) \pm 10({\rm syst})\,{\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 237\,{\rm pb}, \\ \sigma^{\chi_{c0}\chi_{c0}} &< 69\,{\rm nb}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 45\,{\rm pb}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 141\,{\rm pb}, \end{array}$$



R. McNulty, Central Exclusive Production at LHCb

48

#### How much is exclusive?



42+-13% but model dependence in describing inelastic contribution

## **Comparison to theory**

LHCb estimate exclusive cross-section. **24+-9 pb** 

Harland-Lang, Khoze, Ryskin: (arXiv: 1409.4785) **2-7 pb** 



## **Conclusions**



Consistent picture of  $J/\psi$  photoproduction at different energies and different colliders

'Surprising' observation of  $J/\psi J/\psi$ : consistent with DPE mechanism

What other surprises/insights might central exclusive production hold?

#### High rapidity shower counters for LHCb

- Increase rapidity gap with scintillators in forward region
- Use existing electronics



Left 1.  $z \sim -7.5$  m (after MBXW) 2.  $z \sim -19$ m (before MBXWS) 3.  $z \sim -114$ m (after BRANS)



First simulations suggest veto region for charged and neutral particles can be extended to include  $5 < |\eta| < 8$  - an extra 6 units in pseudorapidity.

# Herschel Integration inside Tunnel









## $p_T^2$ spectrum

