
Sandro Wenzel / CERN-PH-SFT

In collaboration with: John Apostolakis (CERN), Marilena Bandieramonte (University of 
Catania, IT), Georgios Bitzes (CERN), Rene Brun (CERN), Philippe Canal (Fermilab), 
Federico Carminati (CERN), Gabriele Cosmo (CERN), Johannes Christof De Fine Licht 
(CERN), Laurent Duhem (Intel), Daniel Elvira (Fermilab), Andrei Gheata (CERN), Soon 
Yung Jun (Fermilab), Guilherme Lima (Fermilab), Tatiana Nikitina (CERN), Mihaly Novak 
(CERN), Raman Sehgal (Bhabha Atomic Research Centre), Oksana Shadura (CERN) 

16th International workshop on Advanced Computing and Analysis Techniques in physics 
research (ACAT); Prague 1.9.-5.9.2014

 Towards a high performance detector 
geometry library on CPU and GPU

for  particle-detector simulation

1



geometry in simulation; typical tasks
ROOT, Geant4, USolids packages
the need to go beyond current implementations

Part I (“Geometry in simulation”)

overview
walk-through of new features; improvements
performance examples

Part II: Introducing “VecGeom”: towards a vectorized and 
templated geometry library for detector simulation

Part III: Some words on generic programming 
approach

shared scalar/vector (CUDA) kernels

2



Geometry in simulation

geometrical model or description of detectors integral part of “particle-
detector” simulation, reconstruction etc.; 

detectors usually are modeled as a hierarchy of shape primitives containing 
other shape primitives

CMS detector: boxes, 
trapezoids, tubes, cones, 
polycones, ...

3



Geometry in simulation

geometrical model or description of detectors integral part of “particle-
detector” simulation, reconstruction etc.; 

detectors usually are modeled as a hierarchy of shape primitives containing 
other shape primitives

CMS detector: boxes, 
trapezoids, tubes, cones, 
polycones, ...

?in or out collision detection 
and distance to 

enter object

?

minimal(safe) 
distance to object

distance to leave 
object

A geometry library offers an API to ...

3



Geometry/Solid - Packages

ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase quality
• increase long term 

maintainability

4



Geometry/Solid - Packages

ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

example for improvement:
• new polycone (~8 faster 

than Geant4/Root)
• multi-union, tesselated solids

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase quality
• increase long term 

maintainability

4



New needs/beyond USolids

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today!

5



New needs/beyond USolids

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today!

• no use of SIMD vectorization

• no interfaces to process many particles at once

• no use of HPC features of C++ 
(“templates”) which could further improve 
performance

• (no library support on GPU)

but: new needs/requirements not yet 
addressed by current implementations

goals

5



Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider

6



Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster

primary target of this 
investigation; relevant for 
Geant-V prototype

6



Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster

primary target of this 
investigation; relevant for 
Geant-V prototype

internal vectorization

beneficial for current 
simulations

vectorization of inner loops; not common 
in shape code; but feasible for a couple of 
shapes (trapezoid)

internal loop over lateral planes 
for distance calc

6



Software Challenges implied by goals

• How do we achieve reliable vectorization on CPU?

• easy: we use a specialized C++ vectorization library (Vc!)

• code in terms of  “vector types” instead of scalar types:  double   vs   
Vc::double_v

7



Software Challenges implied by goals

• How do we achieve reliable vectorization on CPU?

• easy: we use a specialized C++ vectorization library (Vc!)

• code in terms of  “vector types” instead of scalar types:  double   vs   
Vc::double_v

double DistanceTo(  1 particle ) 
double* DistanceTo( many particles )
bool    Contains  ( 1 particle )
bool*   Contains ( many particles )
double SafeDistance(  1 particle )
double* SafeDistance( many particles )
double DistanceToOut ( 1 particle )
double* DistanceToOut( many particles )

x,y,z
Box

• In particular: How do we keep the code base small while maintaining 
good speed + long term maintainability ?

At least ~5 new 
functions per solid

~20 primitive solid

~100 new functions to maintain 
( possibly more with CUDA ...)

• How do we cope with the multiplication of interfaces ( scalar 
API, many-particle  API, CUDA ) ... ?

7



Introducing “VecGeom”

ROOT/TGeo

GEANT4 
geometry 
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

AIDA2 USOLIDS

?

started as prototype project with tight focus to 
study benefit of vectorization for multi-particle API 
in geometry
• primarily motivated from GeantV-prototype

codename “VecGeom”

now evolved to project that addresses all 
goals and challenges presented before

8



Introducing “VecGeom”

ROOT/TGeo

GEANT4 
geometry 
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

AIDA2 USOLIDS

?

• already developed back-to-back with 
USolids; sharing a repositions; same 
interfaces

• solid classes should become natural 
evolution of USolids library 

started as prototype project with tight focus to 
study benefit of vectorization for multi-particle API 
in geometry
• primarily motivated from GeantV-prototype

codename “VecGeom”

now evolved to project that addresses all 
goals and challenges presented before

8



Overview of  “VecGeom”

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

(templated/
specialized)

solid primitives

common C++ 
template functions

specialized 
functions

key features compared to USolids:
vectorized + templated solid library;
extended API;  
improved code reuse;
further improved algorithms

may use
target use

U
So

lid
s

9



Overview of  “VecGeom”

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

(templated/
specialized)

solid primitives

common C++ 
template functions

specialized 
functions

key features compared to USolids:
vectorized + templated solid library;
extended API;  
improved code reuse;
further improved algorithms

may use
target use

functionality to 
create hierarchies of 
volumes = detector 

on CPU + GPU

detector  
description

detector
navigation

Scalar 
navigation

Vector 
navigation 

+

U
So

lid
s

9



Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

10



Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
oo

t

G
4

U
So

lid
s

VG
S

V
M

P

tim
e 

un
its

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

10



Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved scalar 
performance
• improved 

algorithms (avoid 
atan2)

• template shape 
specialization

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
oo

t

G
4

U
So

lid
s

VG
S

V
M

P

tim
e 

un
its

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

10



Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved scalar 
performance
• improved 

algorithms (avoid 
atan2)

• template shape 
specialization

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
oo

t

G
4

U
So

lid
s

VG
S

V
M

P

tim
e 

un
its

excellent SIMD 
vector 

performance

SIMD speedup cmp to USolidsx3.3 x7 x13.62
gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

10



Solid/shape implementation status; performance 

slide under construction!

box

fulltube

tubeseg

paraboloid

trap

orb

trd

parallelepiped

timings for collision detection 
for various primitives

Root

G4

VecGeom

= VecGeom SIMD 
performance

very generic performance pattern 
for all functions

11



going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

SubtractionSolid( AbstractShape * left, AbstractShape * right );

12



going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

SubtractionSolid( AbstractShape * left, AbstractShape * right );

template <typename LeftSolid, typename RightSolid>
class TSubtractionSolid
{
  TSubtractionSolid( LeftSolid * left, RightSolid * right );
};

• compiler can produce optimized code for any combination of primitive 
shapes ( “template-shape specialization” )

• no virtual function calls

• vectorization comes from reusing vector functions of components

• now offer advanced way to combine shapes ( ala stl )

12



going complex (condt)

• performance example for a subtraction solid “box minus 
tubesegment” ( in CMS detector )

ROOT
Geant4
VecGeom Scalar
VecGeom MP

0

375

750

1125

1500

In-or-Out? DistanceToOut SafetyToOut

 SIMD/Geant4 speedup:   6.6x                 3.2x                       17x

 SIMD/ROOT speedup:    8x                   4.6x                       31x 

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

TODO: quantify gain from templates

13



VecGeom in action ...

• VecGeom is functionally complete. We can construct detectors and navigate 
particles on CPU + GPU

• Geant-Vector prototype can run complete first particle-detector simulations 
using VecGeom

• have the ability to switch between ROOT/TGeo  and VecGeom with 
consistent results

• measured a total simulation runtime improvement of 40% going 
from TGeo to VecGeom for a simple box-like detector (ExN03 from Geant4)

• should be able to simulate with CMS detector soonish ....

0

1.50

3.00

4.50

6.00
w

ith
T

G
eo w
ith

Ve
cG

eo
m

14



Part III:  Some words on programming approch

15



achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );
remember...

16



achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );

template<class Backend>
Backend::double_t 
commonFunction( Backend::double_t const & input )
{
    // complicating code implementing this 
function
    // using only abstract types that Backend 
provides
}

remember...

16



achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );

template<class Backend>
Backend::double_t 
commonFunction( Backend::double_t const & input )
{
    // complicating code implementing this 
function
    // using only abstract types that Backend 
provides
}

struct ScalarBackend
{
    typedef double double_t;
    typedef bool   bool_t;
    static const bool IsScalar=true;
    static const bool IsSIMD=false;
};

struct VectorBackend
{
    typedef Vc::double_v double_t;
    typedef Vc::double_m bool_t;
    static const bool IsScalar=false;
    static const bool IsSIMD=true;
};

attention: this is not valid C++ code; need an additional “typename” before Backend

• “Backend” is a struct  encapsulating standard types/
properties for “scalar, vector, CUDA” programming; makes 
information injection into template function easy

remember...

16



double Point::Distance(Vector3D const& a)
{
    return DistanceKernel<ScalarBackend>( a );
}

Vc::double_v Point::Distance(Vector3D<Vc::double_v> 
const& a)    
{
    return DistanceKernel<VectorBackend>( a );
}   

• toy example: calculate distance of particles to a Point represented by class Point with 
members (fX,fY,fZ)

• Point class offers 2 “distance” interfaces inlining same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

17



double Point::Distance(Vector3D const& a)
{
    return DistanceKernel<ScalarBackend>( a );
}

Vc::double_v Point::Distance(Vector3D<Vc::double_v> 
const& a)    
{
    return DistanceKernel<VectorBackend>( a );
}   

• toy example: calculate distance of particles to a Point represented by class Point with 
members (fX,fY,fZ)

• Point class offers 2 “distance” interfaces inlining same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

template<typename Backend>
inline __attribute__((always_inline))
Backend::double Point::DistanceKernel( Vector3D<Backend::double_t> const & point )
{
  Backend::double_t xp = fX - point.x();
  Backend::double_t yp = fY - point.y();
  Backend::double_t zp = fZ - point.z();
  // might have some Backend specific code
  if( Backend::IsScalar )
  {
      // we are able to diverge the code paths between different backends
  }
  return Sqrt(xp*xp + yp*yp + zp*zp);
}

produces solid SIMD code

17



Summary

•  VecGeom is a detector geometry library which:

• is fast

• offers vectorized multi-particle treatment

• follows generic programming approach 
to reduce code size

• (supports CUDA and GPU)

• Now much more confident to tackle vectorization 
of physics routines

18



Sandro Wenzel, CERN-PH-SFT ACAT Prague 2014

Backup

show generic trap developments ( internal vectorization )

19
19



Sandro Wenzel, CERN-PH-SFT ACAT Prague 2014

Backup

slides on tube template shape specialization

20
20



Sandro Wenzel

common code - many realizations
template<typename TubeType>
class 
SpecTube{
 //  ...
 bool Inside( Vector3D const & ) const;
 //...
};

sharing code between classes with compile-time branches ( scalar toy example )

AbstractTube

Inside
SpecTube

 TubeType

template<typename TubeType>
bool SpecTube<TubeType>::Inside( Vector3D const & x) const
{
! // checkContainedZ
! if( std::abs(x.z) > fdZ ) return false;

! // checkContainmentR
! double r2 = x.x*x.x + x.y*x.y;
! if( r2 > fRmaxSqr ) return false;

! if ( TubeType::NeedsRminTreatment )
! {
! ! if( r2 < fRminSqr ) return false;
! }

! if ( TubeType::NeedsPhiTreatment )
! {
! ! // some code
! }
! return true;
}

we can express “static” ifs as 
compile-time if statements 
(e.g. via const properties of 

TubeType)

gets optimized away if a certain 
TubeType does not need this code

compiler creates different binary 
code for different TubeTypes

21
21


