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 Towards a high performance detector 
geometry library on CPU and GPU

for  particle-detector simulation
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geometry in simulation; typical tasks
ROOT, Geant4, USolids packages
the need to go beyond current implementations

Part I (“Geometry in simulation”)

overview
walk-through of new features; improvements
performance examples

Part II: Introducing “VecGeom”: towards a vectorized and 
templated geometry library for detector simulation

Part III: Some words on generic programming 
approach

shared scalar/vector (CUDA) kernels
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Geometry in simulation

geometrical model or description of detectors integral part of “particle-
detector” simulation, reconstruction etc.; 

detectors usually are modeled as a hierarchy of shape primitives containing 
other shape primitives

CMS detector: boxes, 
trapezoids, tubes, cones, 
polycones, ...
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Geometry in simulation

geometrical model or description of detectors integral part of “particle-
detector” simulation, reconstruction etc.; 

detectors usually are modeled as a hierarchy of shape primitives containing 
other shape primitives

CMS detector: boxes, 
trapezoids, tubes, cones, 
polycones, ...

?in or out collision detection 
and distance to 

enter object

?

minimal(safe) 
distance to object

distance to leave 
object

A geometry library offers an API to ...
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Geometry/Solid - Packages

ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase quality
• increase long term 

maintainability
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Geometry/Solid - Packages

ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

example for improvement:
• new polycone (~8 faster 

than Geant4/Root)
• multi-union, tesselated solids

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase quality
• increase long term 

maintainability
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New needs/beyond USolids

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today!
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New needs/beyond USolids

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today!

• no use of SIMD vectorization

• no interfaces to process many particles at once

• no use of HPC features of C++ 
(“templates”) which could further improve 
performance

• (no library support on GPU)

but: new needs/requirements not yet 
addressed by current implementations

goals
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Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider
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Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster

primary target of this 
investigation; relevant for 
Geant-V prototype
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Targeting vectorization

• these instructions have to be used to efficiently use compute architecture; 
need to have “vector” data on which we apply the same tasks

• CPU vector instructions become ever more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster

primary target of this 
investigation; relevant for 
Geant-V prototype

internal vectorization

beneficial for current 
simulations

vectorization of inner loops; not common 
in shape code; but feasible for a couple of 
shapes (trapezoid)

internal loop over lateral planes 
for distance calc
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Software Challenges implied by goals

• How do we achieve reliable vectorization on CPU?

• easy: we use a specialized C++ vectorization library (Vc!)

• code in terms of  “vector types” instead of scalar types:  double   vs   
Vc::double_v
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Software Challenges implied by goals

• How do we achieve reliable vectorization on CPU?

• easy: we use a specialized C++ vectorization library (Vc!)

• code in terms of  “vector types” instead of scalar types:  double   vs   
Vc::double_v

double DistanceTo(  1 particle ) 
double* DistanceTo( many particles )
bool    Contains  ( 1 particle )
bool*   Contains ( many particles )
double SafeDistance(  1 particle )
double* SafeDistance( many particles )
double DistanceToOut ( 1 particle )
double* DistanceToOut( many particles )

x,y,z
Box

• In particular: How do we keep the code base small while maintaining 
good speed + long term maintainability ?

At least ~5 new 
functions per solid

~20 primitive solid

~100 new functions to maintain 
( possibly more with CUDA ...)

• How do we cope with the multiplication of interfaces ( scalar 
API, many-particle  API, CUDA ) ... ?
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Introducing “VecGeom”

ROOT/TGeo

GEANT4 
geometry 
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

AIDA2 USOLIDS

?

started as prototype project with tight focus to 
study benefit of vectorization for multi-particle API 
in geometry
• primarily motivated from GeantV-prototype

codename “VecGeom”

now evolved to project that addresses all 
goals and challenges presented before

8



Introducing “VecGeom”

ROOT/TGeo

GEANT4 
geometry 
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

AIDA2 USOLIDS

?

• already developed back-to-back with 
USolids; sharing a repositions; same 
interfaces

• solid classes should become natural 
evolution of USolids library 

started as prototype project with tight focus to 
study benefit of vectorization for multi-particle API 
in geometry
• primarily motivated from GeantV-prototype

codename “VecGeom”

now evolved to project that addresses all 
goals and challenges presented before
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Overview of  “VecGeom”

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

(templated/
specialized)

solid primitives

common C++ 
template functions

specialized 
functions

key features compared to USolids:
vectorized + templated solid library;
extended API;  
improved code reuse;
further improved algorithms

may use
target use

U
So

lid
s
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Overview of  “VecGeom”

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

(templated/
specialized)

solid primitives

common C++ 
template functions

specialized 
functions

key features compared to USolids:
vectorized + templated solid library;
extended API;  
improved code reuse;
further improved algorithms

may use
target use

functionality to 
create hierarchies of 
volumes = detector 

on CPU + GPU

detector  
description

detector
navigation

Scalar 
navigation

Vector 
navigation 

+

U
So

lid
s
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Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

10



Performance case study: the tube segment
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Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved scalar 
performance
• improved 

algorithms (avoid 
atan2)

• template shape 
specialization
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Performance case study: the tube segment

• tube segment one of the most used/important shape primitives

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved scalar 
performance
• improved 

algorithms (avoid 
atan2)

• template shape 
specialization
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excellent SIMD 
vector 

performance

SIMD speedup cmp to USolidsx3.3 x7 x13.62
gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)
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Solid/shape implementation status; performance 

slide under construction!

box

fulltube

tubeseg

paraboloid

trap

orb

trd

parallelepiped

timings for collision detection 
for various primitives

Root

G4

VecGeom

= VecGeom SIMD 
performance

very generic performance pattern 
for all functions
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going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

SubtractionSolid( AbstractShape * left, AbstractShape * right );
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going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

SubtractionSolid( AbstractShape * left, AbstractShape * right );

template <typename LeftSolid, typename RightSolid>
class TSubtractionSolid
{
  TSubtractionSolid( LeftSolid * left, RightSolid * right );
};

• compiler can produce optimized code for any combination of primitive 
shapes ( “template-shape specialization” )

• no virtual function calls

• vectorization comes from reusing vector functions of components

• now offer advanced way to combine shapes ( ala stl )

12



going complex (condt)

• performance example for a subtraction solid “box minus 
tubesegment” ( in CMS detector )

ROOT
Geant4
VecGeom Scalar
VecGeom MP
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In-or-Out? DistanceToOut SafetyToOut

 SIMD/Geant4 speedup:   6.6x                 3.2x                       17x

 SIMD/ROOT speedup:    8x                   4.6x                       31x 

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

TODO: quantify gain from templates
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VecGeom in action ...

• VecGeom is functionally complete. We can construct detectors and navigate 
particles on CPU + GPU

• Geant-Vector prototype can run complete first particle-detector simulations 
using VecGeom

• have the ability to switch between ROOT/TGeo  and VecGeom with 
consistent results

• measured a total simulation runtime improvement of 40% going 
from TGeo to VecGeom for a simple box-like detector (ExN03 from Geant4)

• should be able to simulate with CMS detector soonish ....
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Part III:  Some words on programming approch
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );
remember...
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );

template<class Backend>
Backend::double_t 
commonFunction( Backend::double_t const & input )
{
    // complicating code implementing this 
function
    // using only abstract types that Backend 
provides
}

remember...
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v 
distance( Vc::double_v const & );

double distance( double );

template<class Backend>
Backend::double_t 
commonFunction( Backend::double_t const & input )
{
    // complicating code implementing this 
function
    // using only abstract types that Backend 
provides
}

struct ScalarBackend
{
    typedef double double_t;
    typedef bool   bool_t;
    static const bool IsScalar=true;
    static const bool IsSIMD=false;
};

struct VectorBackend
{
    typedef Vc::double_v double_t;
    typedef Vc::double_m bool_t;
    static const bool IsScalar=false;
    static const bool IsSIMD=true;
};

attention: this is not valid C++ code; need an additional “typename” before Backend

• “Backend” is a struct  encapsulating standard types/
properties for “scalar, vector, CUDA” programming; makes 
information injection into template function easy

remember...
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double Point::Distance(Vector3D const& a)
{
    return DistanceKernel<ScalarBackend>( a );
}

Vc::double_v Point::Distance(Vector3D<Vc::double_v> 
const& a)    
{
    return DistanceKernel<VectorBackend>( a );
}   

• toy example: calculate distance of particles to a Point represented by class Point with 
members (fX,fY,fZ)

• Point class offers 2 “distance” interfaces inlining same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point
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double Point::Distance(Vector3D const& a)
{
    return DistanceKernel<ScalarBackend>( a );
}

Vc::double_v Point::Distance(Vector3D<Vc::double_v> 
const& a)    
{
    return DistanceKernel<VectorBackend>( a );
}   

• toy example: calculate distance of particles to a Point represented by class Point with 
members (fX,fY,fZ)

• Point class offers 2 “distance” interfaces inlining same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

template<typename Backend>
inline __attribute__((always_inline))
Backend::double Point::DistanceKernel( Vector3D<Backend::double_t> const & point )
{
  Backend::double_t xp = fX - point.x();
  Backend::double_t yp = fY - point.y();
  Backend::double_t zp = fZ - point.z();
  // might have some Backend specific code
  if( Backend::IsScalar )
  {
      // we are able to diverge the code paths between different backends
  }
  return Sqrt(xp*xp + yp*yp + zp*zp);
}

produces solid SIMD code
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Summary

•  VecGeom is a detector geometry library which:

• is fast

• offers vectorized multi-particle treatment

• follows generic programming approach 
to reduce code size

• (supports CUDA and GPU)

• Now much more confident to tackle vectorization 
of physics routines
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Sandro Wenzel, CERN-PH-SFT ACAT Prague 2014

Backup

show generic trap developments ( internal vectorization )
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Sandro Wenzel, CERN-PH-SFT ACAT Prague 2014

Backup

slides on tube template shape specialization
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Sandro Wenzel

common code - many realizations
template<typename TubeType>
class 
SpecTube{
 //  ...
 bool Inside( Vector3D const & ) const;
 //...
};

sharing code between classes with compile-time branches ( scalar toy example )

AbstractTube

Inside
SpecTube

 TubeType

template<typename TubeType>
bool SpecTube<TubeType>::Inside( Vector3D const & x) const
{
! // checkContainedZ
! if( std::abs(x.z) > fdZ ) return false;

! // checkContainmentR
! double r2 = x.x*x.x + x.y*x.y;
! if( r2 > fRmaxSqr ) return false;

! if ( TubeType::NeedsRminTreatment )
! {
! ! if( r2 < fRminSqr ) return false;
! }

! if ( TubeType::NeedsPhiTreatment )
! {
! ! // some code
! }
! return true;
}

we can express “static” ifs as 
compile-time if statements 
(e.g. via const properties of 

TubeType)

gets optimized away if a certain 
TubeType does not need this code

compiler creates different binary 
code for different TubeTypes
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