
Modernising ROOT: Building Blocks for
Vectorised Calculations

!
!
!

L. Moneta, D. Piparo, S. Wenzel – CERN
!

TRACK TITLE

The Hardware’s Landscape

2

• Hardware vendors raise computational power of today’s CPUs with
increasing support for parallelism:	

– More cores (beyond the scope of this talk)
– Larger vector units, richer vector instruction sets

• Vector units: perform same operation on multiple data	

– Data parallelism at instruction level	

• Peak performance achievable only if vector units are properly used	

– Especially for “extreme” architectures like the Xeon Phi

September 2014

Double Double Double Double

Float Float Float Float Float Float Float Float

short short short short short short short short short short short short short short short short

128 bits (SSE X)

256 bits (AVX, AVX2)

Vector units are there to stay!

TRACK TITLE

Achieving Vectorisation

3

There are different techniques to achieve vectorised code	

Autovectorisation	

The compiler generates vector instructions automatically for loops
fullfilling some conditions, e.g. no external calls, no dependency between
iterations. Maximally portable, might become fragile.	

Explicit vectorisation	

Implement algorithms with special types implying vectorised operations
(e.g. 8 packed floats). Usage of instruction set specific intrinsics or,
preferably, an abstraction above them.	

Libraries	

Utilise 3rd party libraries which encapsulate the aforementioned
vectorisation strategies, hiding the technical details from the user.

September 2014

TRACK TITLE

Outline

4

• ROOT as a toolkit for algebra, numerical computing and
statistics	

• Fast and vectorisable mathematical functions	

• Support for explicit vectorisation	

• Geometry/Physics Vector and vector-matrix algebra	

• Vectorization in fitting and statistical calculations	

• Plans for the future

September 2014

5

Mathematical 	

Functions

TRACK TITLE

Mathematical Functions

6

• ROOT provides single/double precision of (a)sin, (a)cos, sincos, (a)tan,
atan(2), log, exp and 1/sqrt	

• Fast*, approximate*, inline 	

• Symbols names are different from traditional ones: 	

– In the vdt namespace: vdt::fast_<name>
– Do not force drop-in replacement, allow full control

• Functions usable in autovectorised loops	

– Array signatures available: calculate on multiple elements conveniently

• C++ code only, no intrinsics: portability guaranteed	

– ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>

!
*wrt libm implementations

September 2014

TRACK TITLE

Speedup: ROOT Vs Libm

7
September 2014

Fnc. Libm VDT VDT-FMA
Exp 102 8 5.8
Log 33.3 11.5 9.8
Sin 77.8 16.5 16.5
Cos 77.6 14.4 13.2
Tan 89.7 10.6 8.9
Asin 21.3 8.9 6.9
Acos 21.6 9.1 7.3
Atan 15.6 8.4 6.7
Atan

2
36.4 19.9 18.9

Isqrt 5.7 4.3 2.8

Double
Precision

Time in ns per value calculated

Speedup 	

wrt Libm

FMA: Fused Multiply Add d = a + b x c	

• Operative input range: [-5k, 5k]	

• Speedup factors of >5 not uncommon	

• Effect of FMA clearly visible	

• A waste not to profit from it!
Testbed:

SLC6-GCC48, i7-4770K at 3.50GHz Haswell
glibc 2.12-1.107.el6_4.4 and ROOT 5.34.20

0

5

10

15

20
Exp

Log

Sin

Cos

Tan

Asin

Acos

Atan

Atan2

Isqrt

VDT+FMA
VDT

TRACK TITLE

Effect of vectorisation

8
September 2014

Fnc. Scalar SSE AVX2
Exp 8 3.5 1.7
Log 11.5 4.3 2.2
Sin 16.5 6.2 2.6
Cos 14.4 5.1 2.3
Tan 10.6 4.4 3.2
Asin 8.9 5.8 5
Acos 9.1 5.9 5.1
Atan 8.4 5.6 5.1
Atan

2
19.9 12.7 8.4

Isqrt 4.3 1.8 0.4

Double
Precision

Time in ns per value calculated

Time per
value

calculated
• Effect of vectorisation clearly visible

0

5

10

15

20
Exp

Log

Sin

Cos

Tan

Asin

Acos

Atan

Atan2

Isqrt
Scalar

SSE

AVX2

9

 	

Explicit 	

Vectorization 	

using VC

Horizontal vs Vertical Vectorization

• Horizontal (external) vectorisation:
!

!

!

!

• Vertical (internal) vectorisation:

10

Object 1
{x,y,z}

Object N
{x,y,z}

Object
{ x,y,z}

vectorize algorithm by using
 many objects (e.g. particles)
at the same time

vectorize internally the algorithm operating on a
single object
Object data member (e.g. x,y,z) must be stored in a vector

Object I
{x1,..xn,
 y1…yn,
 z1…zn}

• Horizontal vectorization
• does not require to change algorithmic part of code

• requires changing input/output data structures (flow of data)

• need to collect inputs in vectors (i.e. in structure of arrays)

• use case is limited to the same algorithm applied to several
objects

• Internal vectorization
• require changing internal algorithm code to vectorise

• more difficult to achieve performance gain

• e.g data sizes might be too small to fit in a vector

• but use case is more general

• In ROOT we provide both solutions
11

Vc Library

12

• C++ wrapper library around intrinsic for using SIMD

– developed by M. Kretz (Goethe University Frankfurt)

–minimal overhead by using template classes and inline functions

• Included in ROOT 6.00 and 5.34 versions

• Provides vector classes (Vc::float_v, Vc::double_v) with
semantics as built_in types

– one can use float_v/double_v as float/double

– all basic operations between the built_in types are supported (+,-,/,*)

– provides also replacement for math functions (sqrt, pow, exp, log, sin,…)

– planned to use in the future vdt.

• Possible to exploit vectorization without using intrinsic and with
minimal code changes

– e.g. replace double ➞ double_v in functions

Vc in ROOT - Examples and Performances

13

• Use Vc for horizontal (external) vectorisation

• Support for replacing data members in ROOT classes:

• LorenzVector<PxPyPzE4D<double> > ➞ LorenzVector<PxPyPzE4D<Vc::double_v> >

– SMatrix<double, N1, N2 > ➞ SMatrix<double_v, N1,N2>!

• Loop on list of objects (vectors, matrices) will be reduced by size of
double_v (NITER = NITER / double_v::Size)

• Performances results on some basic vector and matrix operation (using
double types)

– Addition of physics vectors, scaling, invariant mass, boost
– vector product, vector-matrix operations, matrix inversions

• Test using different compilation flags and Vc implementations
– VC_IMPL = Scalar, SSE, AVX

• Compare results with also auto-vectorization
–compiling using -mavx -O3 -ftree-vectorize

– reference is code compiled with -O2

4D Vector Operations

• Test list of 128: LorentzVector<double> vs
LorentzVector<Vc::double_v>

• Speed-up measured versus a scalar version compiled with -O2

14

Sp
ee

d-
up

0

0.5

1

1.5

2

2.5

3

3.5

Ivy Bridge - clang 5.1

Autovec.
Vc scalar
Vc SSE
Vc AVX

Additon
v3=v1+v2

Scaling
v2=a*v1

Boost
B(v)

Inv. Mass
M(v1,v2)

Some compiler optimisation bugs when using SSE implementation ?
Effect not seen when using other compiler (e.g. gcc)

SMatrix Operations

• Operations in SMatrix using Vc::double_v instead of double

– speed-up obtained for processing operations on a list of 128
SMatrix<double,5,5> and SVector<double,5>

15

Sp
ee

d-
up

0

0.5

1

1.5

2

2.5

3
Ivy Bridge - clang 5.1

Autovec.
Vc scalar
Vc SSE
Vc AVX

 v•v M×v M×M M vTv M ATA -1 M

Specialized Vector classes

• New vector classes for internal vectorization
• 3D Vector classes and their transformations developed

as part of Geant4 Vector prototype

• support for internal vectorisation in

• vector-vector operations (additions)

• vector-matrix transformation (rotations)

• matrix-matrix transformation (rotation combinations)

• use Vc for representing internal data

• use Vc::memory<double_v, 3>

• padding the unused 4-th element of the vector

16

Vector Prototype Performance

• test performances on AVX

17

with Georgios Bitzes (CERN Openlab), Raman Sehgal

C
P

U
 c

yc
le

s
(I

nt
el

iC

or
e7

)

0

7

14

21

28

35

Rotation3D x Vector

G4
BlazeLib
Root/S-Matrix
Eigen
new

G GB
la

ze
Li

Ei
ge

n

ne
w

R
oo

Ei
ge

n

ne B
la

ze
Li

R
oo

1.5

1.4

gcc 4.8; -O3 -funroll-loops -mavx; no

preliminary

18

 	

Vectorization 	

in statistical
calculations

Vectorization in Fitting

19

• Vectorize chi-square calculation in fitting ROOT histograms
– work performed by M. Borinsky (CERN summer student)

!
• Required change in data set layout and in functions

– from array of structure to structure of arrays for input data

– vectorized function interface (TF1)

ROOT Fitting Tests

20

Fi
tti

ng
 ti

m
e

old

new

new vectorized

• Observed performance gain from

• new data structure (organising fit data in a structure of arrays)

• array for x values, array for y, array for z…

• from auto-vectorization and using VDT library (for log and exp)

Performance gains on AVX
(E5-2690), gcc 4.7
old ⇒ new : 2.7x
new ⇒ vect: 1.5x
Total speed-up: 4.0x

TRACK TITLE

Future Outlook

21

• Vectorisation in the ROOT fitting classes

• change internally interface for function evaluation

• change fit data structure

• have a template interface able to switch between scalar and
vector data

• use Vc for the vectors and Vdt for function evaluations

• Integrate vectorized vector and rotation classes based on Vc in the
ROOT GenVector package

• develop also classes for 4D (Physics vectors)

• have a new type 3D Vector type using internally the new fast
vector:

• DisplacementVector<double, Cartesian3DFast> !
• Rotation3DFast class

September 2014

Summary

22

• ROOT provides several building block for vectored
calculations
• vdt for mathematical functions

• Vc library

• physics (GenVector) and linear algebra (Smatrix)
classes based on Vc

• support for both external (already available in
latest versions) and internal vectorisation (will be
soon available)

• vectorized function evaluations for fitting and
statistical calculations

23

Backup	

Slides

Sw Engineering, Parallelism & Multi-Core 15/10/2013
24

Speed: VDT On ARM

• ARM Cortex A9, arm-v7 Odroid	

• VDT: Portable and very convenient	

• Simple implementation pays on a simple architecture!

Fnc. Libm VDT
Exp 155 71.4
Log 153 64.6
Sin 202 57.9
Cos 199 54.9
Tan 290 96.4
Asin 99.2 77.9
Acos 95.4 78.9
Atan 127 75.4
Atan
2

187 89.7
Isqrt 24.7 52.0

Time in ns per value calculated

Double
Precision

Sw Engineering, Parallelism & Multi-Core

Accuracy: An Example

15/10/2013
25

• Accuracy was measured comparing the results
of Libm and VDT bit by bit with the
same input	

• Differences quoted in terms of most
significant different bit	

• In the end they are just 32 (64) bits which are
properly interpreted (sign, exponent,
mantissa)!

MAX	
VDT

AVG	
VDT

Exp 2 0.14
Log 2 0.42
Sin 2 0.25
Cos 2 0.25
Tan 2 0.35
Asin 2 0.32
Acos 8 0.39
Atan 1 0.33
Atan2 2 0.27
Isqrt 2 0.45

Only slight difference present: already
enough for many applications

Double
Precision

SMatrix Operations

26

Sp
ee

d-
up

0

1

2

3

4

5

Haswell - g++ 4.9.1

Autovec.
Vc scalar
Vc SSE
Vc AVX

 v•v M×v M×M M vTv M ATA -1 M

• Operations in SMatrix using Vc::double_v instead of double

– speed-up obtained for processing operations on a list of 128
SMatrix<double,5,5> and SVector<double,5>

Kalman Filter Test

27

Clear advantage with Vc
SMatrix code can works
using double_v as
value_type
good boost in performance
in an already performant
code (5-10 times faster than
CLHEP)

• Typical operation in track reconstruction

– very time consuming

• inversion + several matrix-vector multiplications

