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The Hardware’s Landscape
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• Hardware vendors raise computational power of today’s CPUs with 
increasing support for parallelism:	

– More cores (beyond the scope of this talk) 
– Larger vector units, richer vector instruction sets 

• Vector units: perform same operation on multiple data	

– Data parallelism at instruction level	


• Peak performance achievable only if vector units are properly used	

– Especially for “extreme” architectures like the Xeon Phi
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128 bits (SSE X)

256 bits (AVX, AVX2)

Vector units are there to stay!
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Achieving Vectorisation
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There are different techniques to achieve vectorised code	

Autovectorisation	

The compiler generates vector instructions automatically for loops 
fullfilling some conditions, e.g. no external calls, no dependency between 
iterations. Maximally portable, might become fragile.	

Explicit vectorisation	

Implement algorithms with special types implying vectorised operations 
(e.g. 8 packed floats). Usage of instruction set specific intrinsics or, 
preferably, an abstraction above them.	

Libraries	

Utilise 3rd party libraries which encapsulate the aforementioned 
vectorisation strategies, hiding the technical details from the user.
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Outline
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• ROOT as a toolkit for algebra, numerical computing and 
statistics	


• Fast and vectorisable mathematical functions	

• Support for explicit vectorisation	

• Geometry/Physics Vector and vector-matrix algebra	

• Vectorization in fitting and statistical calculations	

• Plans for the future

September 2014



5

Mathematical 	

Functions
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Mathematical Functions
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• ROOT provides single/double precision of (a)sin, (a)cos, sincos, (a)tan, 
atan(2), log, exp and 1/sqrt	


• Fast*, approximate*, inline 	

• Symbols names are different from traditional ones: 	


– In the vdt namespace: vdt::fast_<name> 
– Do not force drop-in replacement, allow full control 

• Functions usable in autovectorised loops	

– Array signatures available: calculate on multiple elements conveniently 

• C++ code only, no intrinsics: portability guaranteed	

– ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture> 

!
*wrt libm implementations
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Speedup: ROOT Vs Libm
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Fnc. Libm VDT VDT-FMA
Exp 102 8 5.8
Log 33.3 11.5 9.8
Sin 77.8 16.5 16.5
Cos 77.6 14.4 13.2
Tan 89.7 10.6 8.9
Asin 21.3 8.9 6.9
Acos 21.6 9.1 7.3
Atan 15.6 8.4 6.7
Atan

2
36.4 19.9 18.9

Isqrt 5.7 4.3 2.8

Double 
Precision

Time in ns per value calculated

Speedup 	

wrt Libm

FMA: Fused Multiply Add d = a + b x c	

• Operative input range: [-5k, 5k]	

• Speedup factors of >5 not uncommon	

• Effect of FMA clearly visible	


• A waste not to profit from it!
Testbed:  

SLC6-GCC48, i7-4770K at 3.50GHz Haswell 
glibc 2.12-1.107.el6_4.4 and ROOT 5.34.20
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Effect of vectorisation

8
September 2014

Fnc. Scalar SSE AVX2
Exp 8 3.5 1.7
Log 11.5 4.3 2.2
Sin 16.5 6.2 2.6
Cos 14.4 5.1 2.3
Tan 10.6 4.4 3.2
Asin 8.9 5.8 5
Acos 9.1 5.9 5.1
Atan 8.4 5.6 5.1
Atan

2
19.9 12.7 8.4

Isqrt 4.3 1.8 0.4

Double 
Precision

Time in ns per value calculated

Time per 
value 

calculated
• Effect of vectorisation clearly visible
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Explicit 	

Vectorization 	

using VC



Horizontal vs Vertical Vectorization 

• Horizontal (external) vectorisation: 
!

!

!

!

• Vertical (internal) vectorisation:

10

Object 1 
{x,y,z}

Object N 
{x,y,z}

Object 
{ x,y,z} 

vectorize algorithm by using 
 many objects (e.g. particles)  
at the same time 
 

vectorize internally the algorithm operating on  a  
single object  
Object data member (e.g. x,y,z) must be stored in a vector

Object I 
{x1,..xn, 
 y1…yn, 
 z1…zn} 



• Horizontal vectorization 
• does not require to change algorithmic part of code 

• requires changing input/output data structures (flow of data) 

• need to collect inputs in vectors (i.e. in structure of arrays) 

• use case is limited to the same algorithm applied to several 
objects 

• Internal vectorization 
• require changing internal algorithm code to vectorise 

• more difficult to achieve performance gain 

• e.g data sizes might be too small to fit in a vector  

• but use case is more general 

• In ROOT we provide both solutions 
11



Vc Library
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• C++ wrapper library around intrinsic for using SIMD 

– developed by M. Kretz (Goethe University Frankfurt) 

–minimal overhead by using template classes and inline functions 

• Included in ROOT 6.00 and 5.34 versions 

• Provides vector classes (Vc::float_v, Vc::double_v) with 
semantics as built_in types 

– one can use float_v/double_v as float/double 

– all basic operations between the built_in types are supported (+,-,/,*) 

– provides also replacement for math functions  (sqrt, pow, exp, log, sin,…) 

– planned to use in the future vdt. 

• Possible to exploit vectorization without using intrinsic and with 
minimal code changes 

– e.g.  replace double ➞  double_v in functions



Vc in ROOT - Examples and Performances
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• Use Vc for horizontal (external) vectorisation 

• Support for replacing data members in ROOT classes:   

• LorenzVector<PxPyPzE4D<double> > ➞ LorenzVector<PxPyPzE4D<Vc::double_v> > 

– SMatrix<double, N1, N2 >   ➞   SMatrix<double_v, N1,N2>!

• Loop on list of objects (vectors, matrices) will be  reduced by size of 
double_v (NITER = NITER / double_v::Size) 

• Performances results on some basic vector and matrix operation (using 
double types) 

– Addition of physics vectors, scaling, invariant mass, boost  
– vector product, vector-matrix operations, matrix inversions 

• Test using different compilation flags and Vc implementations 
– VC_IMPL = Scalar, SSE, AVX 

• Compare results with also auto-vectorization 
–compiling using -mavx -O3 -ftree-vectorize  

– reference is code compiled with -O2



4D Vector Operations

• Test list of 128:  LorentzVector<double> vs   
LorentzVector<Vc::double_v> 

• Speed-up measured versus a scalar version compiled with -O2
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Some compiler optimisation bugs when using SSE implementation ? 
Effect not seen when using other compiler (e.g. gcc)



SMatrix Operations

• Operations in SMatrix using Vc::double_v instead of double 

– speed-up obtained for processing operations on a  list of 128  
SMatrix<double,5,5> and SVector<double,5> 
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Specialized Vector classes

• New vector classes for internal vectorization 
• 3D Vector classes and their transformations developed 

as part of Geant4 Vector prototype  

• support for internal vectorisation in 

• vector-vector operations (additions) 

• vector-matrix transformation (rotations) 

• matrix-matrix transformation (rotation combinations) 

• use Vc for representing internal data 

• use Vc::memory<double_v, 3> 

• padding the unused 4-th element of the vector

16



Vector Prototype Performance

• test performances on AVX

17

with Georgios Bitzes (CERN Openlab), Raman Sehgal 
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Vectorization 	

in statistical 
calculations



Vectorization in Fitting
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• Vectorize chi-square calculation in fitting ROOT histograms 
– work performed by M. Borinsky (CERN summer student ) 

!
• Required change in data set layout and in functions 

– from array of structure to structure of arrays for input data 

– vectorized function interface (TF1)



ROOT Fitting Tests
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• Observed performance gain from 

• new data structure ( organising fit data in a structure of arrays) 

• array for x values, array for y, array for z…  

• from auto-vectorization and using VDT library (for log and exp) 

Performance gains on AVX 
(E5-2690), gcc 4.7 
old ⇒ new :  2.7x 
new ⇒ vect:   1.5x 
Total speed-up: 4.0x
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Future Outlook
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• Vectorisation in the ROOT fitting classes  

• change internally interface for function evaluation 

• change fit data structure 

• have a template interface able to switch between scalar and 
vector data 

• use Vc for the vectors and Vdt for function evaluations 

• Integrate vectorized vector and rotation classes based on Vc in the 
ROOT GenVector package 

• develop also classes for 4D (Physics vectors)  

• have a new type 3D Vector type using internally the new fast 
vector: 

• DisplacementVector<double, Cartesian3DFast> !
• Rotation3DFast class 

September 2014



Summary
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• ROOT provides several building block for vectored 
calculations 
• vdt for mathematical functions 

• Vc library 

• physics (GenVector) and linear algebra (Smatrix) 
classes based on Vc 

• support for both external (already available in 
latest versions) and internal vectorisation (will be 
soon available) 

• vectorized function evaluations for fitting and 
statistical calculations
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Backup	
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Sw Engineering, Parallelism & Multi-Core 15/10/2013
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Speed: VDT On ARM

• ARM Cortex A9, arm-v7 Odroid	

• VDT: Portable and very convenient	

• Simple implementation pays on a simple architecture! 

Fnc. Libm VDT
Exp 155 71.4
Log 153 64.6
Sin 202 57.9
Cos 199 54.9
Tan 290 96.4
Asin 99.2 77.9
Acos 95.4 78.9
Atan 127 75.4
Atan
2

187 89.7
Isqrt 24.7 52.0

Time in ns per value calculated

Double 
Precision



Sw Engineering, Parallelism & Multi-Core 

Accuracy: An Example

15/10/2013
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• Accuracy was measured comparing the results 
of Libm and VDT bit by bit with the 
same input	


• Differences quoted in terms of most 
significant different bit	


• In the end they are just 32 (64) bits which are 
properly interpreted (sign, exponent, 
mantissa)!

MAX	  
VDT

AVG	  
VDT

Exp 2 0.14
Log 2 0.42
Sin 2 0.25
Cos 2 0.25
Tan 2 0.35
Asin 2 0.32
Acos 8 0.39
Atan 1 0.33
Atan2 2 0.27
Isqrt 2 0.45

Only slight difference present: already 
enough for many applications

Double 
Precision



SMatrix Operations
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• Operations in SMatrix using Vc::double_v instead of double 

– speed-up obtained for processing operations on a  list of 128  
SMatrix<double,5,5> and SVector<double,5> 



Kalman Filter Test
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Clear advantage with Vc 
SMatrix code can works 
using double_v as 
value_type 
good boost in performance 
in an already performant 
code (5-10 times faster than 
CLHEP)

• Typical operation in track reconstruction  

– very time consuming  

• inversion + several matrix-vector multiplications


