
Re-engineer Propagation of Charged
Tracks in Electromagnetic Field

(for Geant4)

Qiuchen Xie
Mentors: Dr. Sandro Wenzel, Dr. John Apostolakis

Introduction

Geant4

• GEometry ANd Tracking

• passage of particles through matter

Our Target

• Re-engineering Geometry/magneticfield

• Solves differential equations to find path of a

particle in a (magnetic) field

Overview

• Redesign with template polymorphism to get rid
of virtual function calls
– Template method pattern: CRTP;
– Benefit without using virtual function: we can inline

those functions to further imporve its performance,
i.e. there are no function calls left in stepper classes;

• Vecotorization
– version 1.0: revise the code and use compiler’s

optimizer only (e.g. loop unrolling & vectorization);
– version 2.0: use a template vectorization library

(Blaze-lib) to vectorize the code.

Classes Structure

• There are total 15 different steppers that users
can use. 3 of them are embedded steppers

• Stepper returns dy/dx and error based upon a
fixed step size h

• RightHandSide(x) from equation class will be
called by stepper

• Equation class will need values from
GetFieldValue() from Field Classes

• User can customize the field classes as needed

TEMPLATE STEPPER, EQUATION,
AND FIELD CLASSES

Section 1- master branch

Plug and play- A comparsion

Current version

G4MagErrorStepper

 G4ClassicalRK4

G4Mag_UsualEqRhs

G4CachedMagneticField

 G4QuadrupoleMagField

Templated version

TMagErrorStepper

  TClassicalRK4

TMagFieldEquation

TCachedMagneticField

 TQuadrupoleMagField

As shown, the template classes follow the same inheritance structures; we
can easily plug into the new templated version to replace the current
version.

New Classes

Field Propagation

TEMPLATED DRIVER AND
CHORDFINDER CLASSES

Section 2-branch: “t_driver”

Overview

• We prepared the master branch that called by
G4ChordFinder; so user can test their
performance without worrying changing any
code

• In this branch, we templated higher level
classes; thus we can get rid of virtual function
calls completely

• We also use G4Pow to replace std::pow,
providing a significantly faster pow method

New Classes

Templated Driver Class

VECTORIZE WITH BLAZE-LIB
Section 3- branch: “vector_interface”

Overview

• Vector to replace arrays
– Cleaner code: no loops; dot product: (v1,v2); cross

product: v1%v2; array copy: v1 = v2; etc.
– Vectorize more thoroughly with compiler optimizer

• Vector-type signatures
– Instead of passing by reference, we return result

storing in vectors

• Interface to high level classes
– TChordFinder only requires a few changes to adapt to

this method; no higher level class above TChordFinder
is required to revise

Vector Operators

Vector Return Type

Results

• 5-7% speed up (just template polymorphism) on
tdriver branch; No observable speed changes on
Blaze branch

• Applied vectorization and improved about 20% of
speed

• Obtained a cleaner look of code (blaze version)
• Used G4Pow() and fast_inverse_sqrt() function (much

faster in speed)-- provided overall 200% speed boost
for tabulated field benchmark case

• Got rid of some virtual function calls and inlined those
functions

*benchmarked with NTST a drift chamber Geant4 application

QUESTIONS?
Thank you!

Acknowledgement:
Google Summer of Code 2014

CERN

Particle tracks & numerical methods

Why does a virtual function call slow down the execution of the
program - and how does the CPU handle it ?

•Constructor of an object that contain virtual
function must initialize the vptr table
•run-time method binding: results few extra
instructions every time virtual method is called
as compared to non-virtual method
•Virtual function can not be inlined
•Current C++ compile are unable to optimize
virtual function call(it prevents instruction
scheduling, data flow analysis, etc)

Why does a virtual function call slow down the execution of the
program - and how does the CPU handle it ?

•Virtual function dispatch can cause an
unpreditable branch (branch cache can avoid
this problem). Modern microprocessors tend to
have long pipelines so that the misprediction
delay is between 10 and 20 clock cycles.

