

Recent results of LAr LEM TPC R&D

Shuoxing Wu
Institute for Particle Physics, ETH Zurich
Zurich PhD-Seminar 12.Sep.2014

Introduction - the Liquid Argon (LAr) TPC

LAr properties

Deisity	1.4 g/cm
<u> </u>	87.3 K
Boiling point @ 1 atm	07.3 K
Triple point	83.8058 K, 68.89 kPa
W _{ion}	23.6 eV
Stopping power (MIP)	2.1 MeV/cm
Rayleigh scattering length	90 cm
radiation length	14 cm
Molière radius	9.25 cm
Percentage	0.93%

Light production in LAr:

- 128 nm wavelength, ~5×10⁴ photon/MeV
- LAr transparent to its own scintillation

Charge production and transportation in LAr:

- 10 fC/cm (MIP)
- Drift velocity of 2 mm/µs @ 1 kV/cm
- Diffusion ≈ mm after meters' drift

Giant LAr TPC suits neutrino detection

LAGUNA-LBNO programme and GLACIER

Large Apparatus for Grand Unification and Neutrino Astrophysics and

Long Baseline Neutrino Oscillations

LAGUNA-LBNO physics:

- 1. Accelerator based neutrino physics
 - Mass Hierarchy determination
 - δ_{CP} measurement
 - Sterile neutrino
- 2. Neutrino astronomy:
 - Solar neutrino
 - Atmosphere neutrino
 - Super-nova neutrino
- 3. Proton decay search

Giant Liquid Argon Charge Imaging expERiment

- Double phase LAr LEM TPC
- Two detectors with 20 kton and 50 kton fiducial mass as far detector for LAGUNA-LBNO

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Milestones towards GLACIER

- ➤ 2003: the GLACIER concept
- A. Rubbia, Experiments for CP-violation: A giant liquid argon scintillation, Cherenkov and Charge imaging experiment? <u>arXiv:hep-ph/0402110</u>
- ➤ Proof of principle with 10x10 cm² double phase LAr LEM-TPC prototype:
- A. Badertscher et al., "Operation of a double-phase pure argon Large Electron Multiplier Time Projection Chamber: Comparison of single and double phase operation "NIM A617 (2010) p.188-192
- A. Badertscher et al., "First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode" NIM A641 (2011) p.48-57
- \succ First successful operation of a 40x76 cm² device in November 2011:
- A. Badertscher et al., "First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier" <u>JINST 7 (2012) P08026</u>
- A. Badertscher et al., "First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm² readout", <u>JINST 8 (2013)P04012</u>
- > 10x10 cm² double phase LAr LEM-TPC prototype: further R&D towards final, simplified charge readout for GLACIER:
- Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design, <u>JINST 9 P03017</u>
- > Future
- 3x1x1m³ pre-prototype to be put in B182@CERN
- 6x6x6m³ prototype (WA105) to be operated at CERN NA approved by CERN SPSC.

Final goal: Giant LAr LEM TPC as far detector for a Long Baseline Neutrino Oscillation (LBNO) experiment (SPSC-EOI-007)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The novel double phase readout

- 4.) Charge collection on a multilayer 2D anode readout (symmetric unipolar signals with two orthogonal views)
- 3.) Charge multiplication in the holes of the Large Electron Multiplier (LEM)

- 2.) Drift electrons are efficiently extracted into the gas phase
- 1.) Ionization electrons drift towards the liquid argon surface

The 10x10x20 cm³ LAr LEM TPC

With this small chamber, we can collect in a short amount of time a high quality and

large data-sets of cosmic muon with constant energy loss per unit length ~10 fC/cm

We're developing:

- ➤ Low noise (capacitance) 2D anode.
- LEM with uniform and long term stable gain and discharge resistance.
- > Simplified readout electronics system.

LAr LEM TPC setup

Anode requirements for large area readout

To reach basic GLACIER 4x4m² CRP (2m readout length) design:

- reduce capacitance: have long readout strips while keeping minimum noise (upper limit for ~1000 e- ENC noise ~ 350 pF)
- simplify production: integrate two views on same PCB layer
- symmetric X-Y charge sharing

Best solution to optimize capacitance and resolution

Other anodes tested

Other anodes tested

Pattern too loose, non uniform charge collection between strips

Compatible performance as 150 pF/m anode, but has higher capacitance PHD seminar 2014

Resoution view0

250

200

Effective gain

50

LEM performance

70

60

Muon event @ gain ~20:

Muon event @ gain ~160:

Eff. Gain =
$$\frac{\langle dQ/dx_0 \rangle + \langle dQ/dx_1 \rangle}{dQ/dx_{mip}}$$

Gain uniformity

Systematic inspection of LEM parameters

- Gain curves difference explainable from amplification length and central E field
- Gain over 100 is feasible for each LEM
- "Discharge-free" operation @ gain 20 for ~ 1 week

Optimised parameters:

- ➤ 1mm thickness
- > 500 µm diameter hole
- > 40-50 μm rim size
- > 800 μ m pitch
- > hexagonal arrangement

Stability of the gain

Gain of LEM depends on: 1. gas property (pressure, temperature, mixture...)

- 2. electric field across the LEM E
- 3. effective length across the LEM x

Stability of the gain – after pressure correction

- ✓ Gain stabilizes at ~30 (at LEM field of 34 kV/cm) after an initial decrease with τ ~ 0.5 days
- ✓ Stable gain is ~1/3 of the original one

Gain stability vs. LEM parameter

Charging-up time and gain ratio

stable gain is important for underground operation

Towards large area readout - the 1x1 m² charge readout system

1x1 m² G10 structure with fake anode/LEM

Implemented with real anodes and grid

PHD seminar 2014

Next step: the 3x1x1 m³ LAr LEM TPC

Time scale:2014-2015

Site: B182@CERN

LAr purity in non-evacuated membrane tank, performance of large area readout,

cold front-end electronics...

Summary

Good progress has been made towards reaching the goal of large area readouts for LAr-LEM TPCs:

- > Low capacitance (~150 pF/m) 2D anode turns out to fulfill the requirements on resolution
- > Initial gain over 100, stable gain around 30 were reached by LEMs
- > Gain uniformity within ±10% achieved by matching extraction grid with anode strips
- ➤ large area readout mechanically feasible

The next big step is the 3x1x1 m³ LAr LEM TPC

Shuoxing Wu ETHZ PHD seminar 2014 20

Thank you and questions?

What happens locally when discharging?

Runs at different LEM fields

