Search for MUonium TO Neutrinos

Carlos Vigo Supervised by: Prof. A. Rubbia and Dr. P. Crivelli

Institute for Particle Physics, ETH Zürich

UZH-ETHZ-PSI PhD Seminars 2014 September 12, 2014, Zürich

1 Introduction

2 Theoretical Motivation

3 MUTON Proposal

4 Feasibility study with π^+ beam line

5 Outlook

Topics of my thesis

- Search for the standard model (SM) process $e\mu \rightarrow \nu_{\mu}\nu_{e}$ (MUonium TO Neutrinos, *MUTON*). The signal of this process can be enhanced by some models beyond the SM (e.g. mirror matter or heavy neutrinos).
- Search for invisible decay channels of positronium (Experiment on Positronium Invisible Channels, *EPIC*). Test of mirror matter as a possible dark matter candidate, as well as other beyond–SM physics (e.g. milli-charged particles).

Topics of my thesis

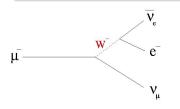
- Search for the standard model (SM) process $e\mu \rightarrow \nu_{\mu}\nu_{e}$ (MUonium TO Neutrinos, *MUTON*). The signal of this process can be enhanced by some models beyond the SM (e.g. mirror matter or heavy neutrinos).
- Search for invisible decay channels of positronium (Experiment on Positronium Invisible Channels, *EPIC*). Test of mirror matter as a possible dark matter candidate, as well as other beyond–SM physics (e.g. milli-charged particles).

My specific task

• Construction of a 4π calorimeter with BGO crystals to search for rare processes with zero energy deposition signal. This calorimeter will be used for both MUTON and EPIC experiments.

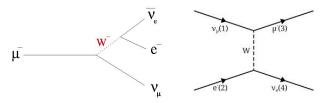
Introduction

2 Theoretical Motivation


3 MUTON Proposal

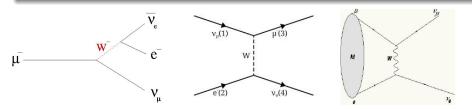
4 Feasibility study with π^+ beam line

5 Outlook


The muon

- Lepton from the second family discovered in 1936.
- $\bullet~{\sim}200$ times heavier than the electron, lifetime 2.2 $\mu s.$
- Purely electroweak decay process $\mu
 ightarrow e
 u_{\mu}
 u_{e}$ through charged currents.
- Three canonical processes connected by crossing symmetry:
 - Standard μ decay: $\mu
 ightarrow e
 u_{\mu}
 u_{e}$ (1936)¹

The muon


- Lepton from the second family discovered in 1936.
- $\bullet~{\sim}200$ times heavier than the electron, lifetime 2.2 $\mu s.$
- Purely electroweak decay process $\mu
 ightarrow e
 u_{\mu}
 u_{e}$ through charged currents.
- Three canonical processes connected by crossing symmetry:
 - Standard μ decay: $\mu
 ightarrow e
 u_{\mu}
 u_{e}$ (1936)¹
 - Inverse μ decay: $e
 u_{\mu}
 ightarrow \mu
 u_{e}$ (1980)²

Carlos Vigo (IPP - ETHZ)

The muon

- Lepton from the second family discovered in 1936.
- ${\sim}200$ times heavier than the electron, lifetime $2.2\,\mu s.$
- Purely electroweak decay process $\mu
 ightarrow e
 u_{\mu}
 u_{e}$ through charged currents.
- Three canonical processes connected by crossing symmetry:
 - Standard μ decay: $\mu
 ightarrow e
 u_{\mu}
 u_{e} \ (1936)^{1}$
 - Inverse μ decay: $e
 u_{\mu}
 ightarrow \mu
 u_e$ (1980)²
 - μ e annihilation $e\mu \rightarrow \nu_{\mu}\nu_{e}$ (not yet observed)

Carlos Vigo (IPP - ETHZ)

The $\mu^+e^- ightarrow u_\mu u_e$ decay mode

- At low energy $\mu^+ e^-$ can form the atomic bound state muonium (*Mu*).
- Muonium is bounded by electromagnetic forces and can self-annihilate through CC.
- Branching ratio predicted to be $Br(Mu
 ightarrow
 u_{\mu}
 u_{e}) = 6.6 imes 10^{-12}.^{3}$
- Current limit is $Br(Mu \rightarrow {\rm inv.}) < 5.7 \times 10^{-6}$ extracted from MuLan.

Experimental signature

- No measurement of neutrinos from $\mu^+ e^- \rightarrow \nu_\mu \nu_e.$
- Instead search for no energy deposition: μ⁺e[−] → invisible.

Beyond-SM physics can be addressed

- Mirror matter oscillations, similar to $n \rightarrow n'$ and $Ps \rightarrow Ps'$ oscillations.⁴
- $\mu \rightarrow \text{inv.:}$ charge non-conserving process which might hold in models with infinite extra dimensions (current limit $Br(\mu \rightarrow \text{inv.}) < 5.2 \times 10^{-3}$).⁴
- $\bullet~$ Heavy neutrino oscillations which might explain the LSND/MiniBooNE anomaly. 5

³A. Czarnecki, G.P. Lepage, and W. Marciano, Phys. Rev. D 61, 073001 (2000)
 ⁴S.N. Gninenko, N.V. Krasnikov, and V.A. Matveev, Phys. Rev. D 87, 015016 (2013)
 ⁵S.N. Gninenko, Phys. Rev. D 76, 055004 (2007)
 ⁶S.N. Gninenko, Phys. Rev. D 83, 093010 (2011)

Carlos Vigo (IPP - ETHZ)

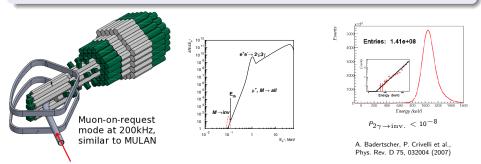
Introduction

2 Theoretical Motivation

3 MUTON Proposal

4 Feasibility study with π^+ beam line

5 Outlook


Experimental Technique with μ^+ beam line

LOI submitted in 2012, encouraged to submit detailed proposal in 2013.

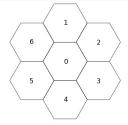
Principle of measurement

Goal: detect $\mu e \rightarrow \text{invisible}$ at a level of $\sim 10^{-12}$.

- Stop a μ^+ in a Mu formation target (fused quartz) surrounded by a 4π hermetic calorimeter.
- 2 Look for missing energy from the decay positron and the annihilation photons within a time gate $t_G \sim 60 \,\mu\text{s} \rightarrow P = e^{-\frac{t_G}{\tau_{\pi}}} = 1.43 \times 10^{-12}$.

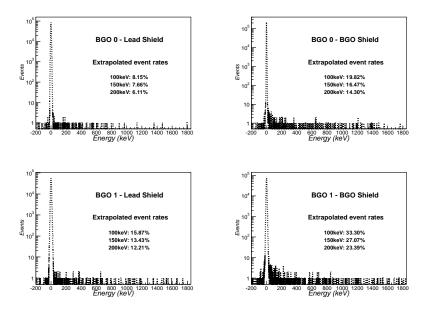
ETH zürich

My contribution: measurement of background.

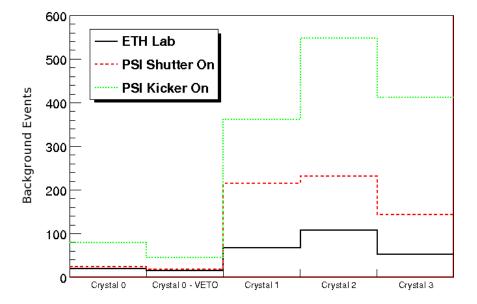

Background definition.

Goal: detect zero-energy events \rightarrow define individual energy threshold E_{th} . Zero-energy event definition: no crystal shows energy deposition above E_{th} . Background: energy deposition above E_{th} uncorrelated with a μ^+ decay.

- Lower E_{th} : better sensitivity reachable.
- Larger *E*_{th}: less background.


Measurement setup.

- 7 BGO used.
- Tests performed at ETH and PSI.
- Crystal position and lead shielding effects tested.



Background Measurements

ETH zürich

Background Measurements

Conclusions

- Lead shielding found to be necessary to reduce environmental background.
- Shielding requirements at PSI are higher due to beam environment.
- $\bullet\,$ Expected inefficiency after shielding and beam collimation $\sim 10\,\%.$

Proposal submitted and positively received. However beam time was not granted due to huge load in μ^+ line.

We are now studying the feasibility of using a π^+ beam line instead to get preliminary results. The target sensitivity for these results is 10^{-9} , which can be achieved in 2 weeks of beam time.

Introduction

2 Theoretical Motivation

3 MUTON Proposal

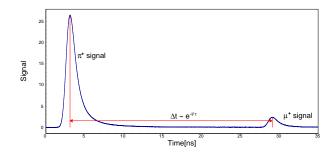
4 Feasibility study with π^+ beam line

5 Outlook

Principle of measurement

Goal: detect $Mu \rightarrow \text{invisible}$ at a level of $\sim 10^{-9}$.

- **(**) Stop a π^+ in an **active** target surrounded by a 4π hermetic ECAL.
- 2 Detect the $\pi^+ \rightarrow \mu^+ \nu_\mu$ decay.
- Sorm *Mu* in the stopping target.
- Look for missing energy from the decay positron and the annihilation photons within a time gate $t_G \sim 45 \,\mu\text{s} \rightarrow P = e^{-\frac{t_G}{\tau_{\pi}}} = 1.31 \times 10^{-9}$.

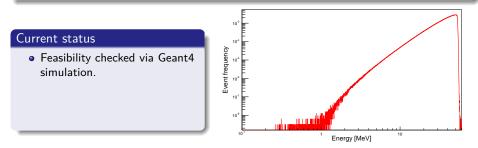

Main challenge: target

- Efficiently form Muonium
- Active material (otherwise introduces great energy losses)
- Fast material to tag the π^+ and μ^+ decay within tens of ns.

Trigger Principle

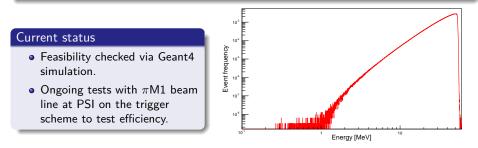
- Use the double signal of π^+ arrival and π^+ decay to trigger the μ^+ .
- Two clear energy depositions (π^+ and μ^+ kinetic energies) within a short time gap ($\tau_{\pi^+} = 26 \text{ ns}$).
- Time and energy cuts applied to suppress fake triggers due to inelastic processes and in-flight decays (65 % efficiency expected).

BaF_2 crystal


- Dense enough to stop π^+ .
- Fastest inorganic crystal available.
- Muonium formation observed in the past⁶. This will be checked by μ SR technique within 2014 at PSI, as well as other possible materials (e.g. PbWO₄ and BrilLanCe).

⁶J.H. Brewer, S.R. Kreitzman et al., Phys. Rev. B 33, 7813 (1986)

BaF_2 crystal


- Dense enough to stop π^+ .
- Fastest inorganic crystal available.
- Muonium formation observed in the past⁶. This will be checked by μSR technique within 2014 at PSI, as well as other possible materials (e.g. PbWO₄ and BrilLanCe).

⁶J.H. Brewer, S.R. Kreitzman et al., Phys. Rev. B 33, 7813 (1986)

BaF_2 crystal

- Dense enough to stop π^+ .
- Fastest inorganic crystal available.
- Muonium formation observed in the past⁶. This will be checked by μ SR technique within 2014 at PSI, as well as other possible materials (e.g. PbWO₄ and BrilLanCe).

⁶J.H. Brewer, S.R. Kreitzman et al., Phys. Rev. B 33, 7813 (1986)

Introduction

2 Theoretical Motivation

3 MUTON Proposal

4 Feasibility study with π^+ beam line

5 Outlook

MUTON Proposal

- Inefficiency due to background can be as low as 10 %.
- Experiment postponed due to heavy load of muon beam lines.

MUTON Proposal

- Inefficiency due to background can be as low as 10 %.
- Experiment postponed due to heavy load of muon beam lines.

Modification for π^+ beam line

- Sensitivity reduced to 10^{-9} , still great improvement to current limit (5.2 \times 10⁻³).
- $\bullet~BaF_2$ and fast inorganic scintillators are candidates for active target.
- Trigger scheme is being tested.

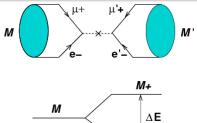
MUTON Proposal

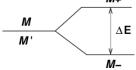
- Inefficiency due to background can be as low as 10 %.
- Experiment postponed due to heavy load of muon beam lines.

Modification for π^+ beam line

- Sensitivity reduced to 10^{-9} , still great improvement to current limit (5.2 × 10^{-3}).
- $\bullet~BaF_2$ and fast inorganic scintillators are candidates for active target.
- Trigger scheme is being tested.

Next Steps


- Carry on full measurement with complete ECAL
- Design, construct and test ECAL injection for EPIC experiment (vacuum pipe).


Thank you for your attention!

Questions?

Mirror Matter Oscillations

- Phenomenology is similar to matter anti-matter and other mirror oscillations (M–M, Ps–Ps', n–n').
- New mass eigenstates $M^{\pm} = \frac{M \pm M'}{\sqrt{2}}$.
- Energy splitting $\Delta E = 1.5 \times 10^{-12} \cdot \left(\frac{G_{MM}}{G_F}\right)^2 [\text{eV}]$
- Oscillation probability P(M–M')(t) = 2.56 \times 10 $^{-5} \cdot \left(\frac{G_{MM}}{G_{F}}\right)^2$

Other charge non-conserving processes have very strong experimental limits $\tau(e^- \rightarrow inv) = 1 > 2.4 \times 10^{24} v = 10^{24} MA^{200}$

$\tau (e \rightarrow inv)$	$> 2.4 \times 10^{-1}$ y	DAMA 99
$\tau \left(p^+ \rightarrow \text{inv} \right)$	$>9.2 imes10^{34}$ y	SuperK '03
$Br(n \rightarrow p^+ \nu \nu)$	$< 8.0 imes 10^{-27}$	Solar ν exp. '96
τ ($\dot{n} \rightarrow inv$)	$> 5.8 imes 10^{29}$ y	KamLand '06

No direct experimental limits for μ and τ

$Br(\mu o inv)$	$ $ < 5.2 \times 10 ⁻³	from comparison of ${\sf G}_{\sf F}$ and ${\sf \Gamma_{\mu}}^5$
Br(au o inv)	$ $ < 1.6 \times 10 ⁻³	MuLan at PSI vs. (indirect) LEP

⁵S.N. Gninenko, N.V. Krasnikov, and V.A. Matveev, Phys. Rev. D 87, 015016 (2013)

- μ v_{μ} υ_{uh} е W
- Mixing between ν_μ and a heavy neutrino ν_h might be able to explain the anomalies in LSND and MiniBooNe experiments.
- If $m_{\nu_h} < 40$ MeV MUTON can be sensitive to this mixing.
- Experimental signature: energy deposition by the monoenergetic γ in an outer layer.

٧_e