

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Neutrino oscillations at T2K

Davide Sgalaberna, ETH Zurich

PhD Seminar, September 11th 2014

T2K experiment

- Neutrino long-baseline experiment (295 km)
- Neutrino flux produced with proton on Carbon target at 30GeV interactions (1/100 v_e v_μ ratio)
- Near Detector (ND280) to measure the neutrino flux and cross sections
- Far detector (Super Kamiokande) measure $v_{\mu} \rightarrow v_{e}$ oscillation
- Recent results:
 - Discovery of $v_{\mu} \rightarrow v_e$ appearance w/ a significance of 7.5 σ to θ_{13} >0
 - First hint of CP violation in the lepton sector

T2K Experiment

T2K Neutrino Beam

- 30 GeV proton beam on C target (90 cm)
- 3 magnetic horns (250kA)

ETH Institute for Particle Physics

- v_{μ} from π^+ decay (~96m decay pipe)
- ν_e contamination from μ and K
- Muon Monitor (MUMON)
 - measure the beam profile and intensity
 - monitor the on-axis beam direction
- Beam dump to stop hadrons
- 2.5° off-axis neutrino beam
 - low-energy narrow band
 - peak at oscillation maximum
 - decrease high-energy background

Hadron production measured by NA61/SHINE experiment (CERN)

- tune the flux and reduce the uncertainties

Beam flux prediction

T2K Run1-4 Flux at ND280

Beam flux is predicted based on NA61/SHINE π , K production measurements and T2K proton beam measurements

- Fundamental are NA61 hadronic production measurements (pC 30GeV as T2K):
- Interaction rate (production cross section)

ND280 detector

- Magnetized near off-axis detector 280 m far from the neutrino production target
- Neutrino interactions are selected in the Fine Grain Detectors, targets of both active polystyrene (CH) scintillator and passive water
- Muons and electrons are selected using the combination of the TPC and Electromagnetic CALorimeter PID
- v_{μ} and v_{e} fluxes are measured in order to constrain the systematic uncertainties at SK
- Measurements of neutrino cross sections are performed

3+1 neutrinos framework

The 3+1 model is an extension of the standard three neutrino mixing

Add a right-handed neutrino (sterile) to the 3 standard flavors

Sterile neutrinos don't interact through standard interactions

m2

Active neutrinos ($v_e v_\mu v_\tau$) can oscillate into sterile neutrinos (v_s)

Why sterile neutrinos?

- Hints of additional non standard neutrinos
- Sterile neutrinos cannot be directly detected
- They can be seen only indirectly through appearance or disappearance of standard neutrinos

Reactor anomaly

/ New theoretical calculations of reactor anti-v_e fluxes consistent w/ a 3σ deficit

Phys.Rev. D83, 073006 (2011)

Gallium anomaly (GALLEX, SAGE experiments)

✓ Deficit of measured anti- v_e interaction is 2.7 σ

Phys. Lett. B685, 47 (2010)

It can be explained adding a sterile neutrino of largest mass $\Delta m^2_{14} \sim O(1 \text{ eV}^2)$ Short base-line is needed

ve disappearance at ND280 JZK

Search for a deficit of $v_{\rm e}$ at the near detector

The following assumptions are done:

$$P_{surv} = 1 - \sin^2 2\theta_{ee} \cdot \sin^2 \left(\frac{1.267\Delta m_{14}^2 L_\nu}{E}\right)$$

- No experimental evidences for v_{μ} disappearance

- Neglect v_{μ} disappearance

and v_e appearance (U_{µ4} = 0)

- $sin^22\theta_{ee} \Delta m^2_{14}$ oscillation parameters for $v_e \rightarrow v_s$
- L → neutrino flight path
- $E \rightarrow$ neutrino true energy

 Δm_{14}^2 around >1eV²

Knowledge of the beam flux is very important

99% are $v_{\mu} \rightarrow$ very good v_e selection is needed to get a clean sample

Event selection

v_e sample

- ✓ Tracks starting in FGD
- Electron-like PID (dE/dx TPC + EM shower ECal)
- ✓ Reject π⁰ → γ → e⁺e⁻ (two close tracks + invariant mass < 50 MeV)
- ✓ Muon rejection factor ~99.8%
- ✓ Purity ~ 63%
- ✓ Constrain the $\pi^0 \rightarrow \gamma \gamma$ w/ the control sample

 $\pi^0 \rightarrow \gamma$ control sample

Main background from low energy photon conversions:

 $v_{\mu} N \rightarrow \pi^{0} \rightarrow \gamma \gamma \rightarrow e^{+}e^{-}$

- Can constrain it from the data by developing a selection of a photon conversion sample
- Look for e+e- pair in the TPC and reconstruct the invariant mass
- ✓ Purity ~ 92%
- ✓ Not sensitive to v_e oscillations

Obs. # of evts = 614 Exp. # of evts = 665 ± 51 (syst)

Obs. # of evts = 989 Exp. # of evts = 1236 ± 246 (syst)

Beam ve measurement: PRD 89, 092003 (2014) Run1-4: 5.9 x 10²⁰ p.o.t.

Selected distributions

- ✓ Constrain systematic uncertainties fitting the v_µ selected sample at ND280 (null oscillations hypothesis)
- ✓ Flux, XSec, Detector systematic uncertainties (55 parameters)
- Events outside the fiducial volume have large uncertainty (30%) due to interactions in heavy nuclei, not well known

v_e sample

Oscillation fit

- \checkmark sin²2 θ_{ee} and Δm^{2}_{41} estimated minimizing a Poisson likelihood ratio
- ✓ 55 nuisance parameters take into account the systematic uncertainties
- Constrained by a gaussian penalty term and profiled
- ✓ Calibration "in situ" of the $\pi^0 \rightarrow \gamma \gamma$ simultaneously fitting the v_e and the control sample

Systematic Uncertainties

TZK

Confidence intervals computed w/ Feldman-Cousins method

- ✓ First sterile search at the near detector in the 3+1 model
- ✓ Analysis of $v_e \rightarrow v_s$ oscillations due to sterile neutrinos has been finalized (no v_μ disappearance is considered)
- \checkmark sin²2 Θ_{ee} > 0.2 && Δm^{2}_{41} > 8 eV²/c⁴ excluded at 95%CL (*Preliminary*)
- Quite large region of Gallium anomaly as well as a small part of the reactor anomaly are rejected at 95% CL
- ✓ Analysis is approved and result presented at the summer conferences ("Rencontres de Blois 2014", "Neutrino 2014")
- ✓ Writing the paper
- Next step is to include the numu sample in the analysis and perform a joint fit in a more complete 3+1 framework
- ✓ Extract sin²2 θ_{ee} , sin²2 $\theta_{\mu\mu}$ and Δm^{2}_{41} fitting both v_{μ} and v_{e} oscillation simultaneously

Standard oscillations at T2K

Open questions:

ETH Institute for Particle Physics

- Is CP symmetry violated in lepton sector $(\delta_{CP} \neq 0)$?
- Mass hierarchy (sign of Δm^{2}_{31})?
- Is 923 maximal (or which octant)?

 $\mathbf{v}_{\mu} \operatorname{disappearance} \rightarrow \operatorname{measure} \mathbf{e}_{23} \operatorname{and} \Delta \mathbf{m}^{2}_{32}$ $P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^{4} \theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}) \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$ $\operatorname{Leading term}$ $\mathbf{v}_{e} \operatorname{appearance} \rightarrow \operatorname{measure} \mathbf{e}_{13} \operatorname{and} \mathbf{\delta}_{CP}$ $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$ $\int_{Can \text{ solve}} \int_{Cer} \operatorname{can be measured} \operatorname{since} \operatorname{since} \operatorname{sin}^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$ $- \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \left(\frac{\Delta m_{21}^{2} L}{4E}\right) \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \operatorname{sin} \delta_{CP}$

T2K far detector: Super-Kamiokandez

- Water Cherenkov detector (50 kton)
- Fiducial mass 22.5 kton

ETH Institute for Particle Physics

- Inner detector (~11k PMTs)
- Outer detector (2k PMTs) determine fully contained events
- Very good e/μ separation
- Muons misidentified as electron <1%

T2K events

- Low scattering
- Ring with sharp edge

- Multiple scattering
- EM shower
- Ring with "fuzzy" edge

- EM shower from $\pi^0 \rightarrow \gamma \gamma$
- Can be misidentified as an electron
- Intrinsic v_e component <1%

T2K selected samples

ν_{μ} event selection

- Fully contained fiducial volume
- Single ring µ-like event
- E_{visible} > 200 MeV
- # decay electron ≤ 1

Look to v_{μ} disappearance and measure θ_{23} and Δm^{2}_{32}

v_e event selection

- Fully contained fiducial volume
- Single ring e-like events
- E_{visible} > 100 MeV
- No decay electron
- 0 < E_{rec} < 1250 MeV
- π⁰ rejection cut

Fit both samples simultaneously to search for CP violation

Current status

- \checkmark Started to work on the v_{μ} v_{e} joint analysis to study δ_{CP}
- Study of control samples to constrain the systematics or simply add events affected by standard oscillations. Work in progress
- Have new results on δ_{CP} based on the Run 1-5 data set (first time w/ anti-v at T2K)

 $\Delta \chi^2$

- Sensitivity studies w/ the anti-v run are ongoing as well
- Anti-v data are very important to solve the degeneracy in δ_{CP}
- ✓ New anti-v run in autumn

19

Conclusions

- Performed the production cross section measurement at NA61/SHINE experiment, need to constrain the flux at T2K
- Search of v_e disappearance due to sterile neutrinos at the near detector has been finalized w/o numu oscillations
- ✓ Writing the paper
- ✓ Update the analysis introducing numu oscillations in a more complex joint fit
- ✓ Moved to standard oscillation analysis at the far detector
- \checkmark Measurement of δ_{CP} and look for hints of CP violation in the leptonic sector
- ✓ Study of possible control samples
- \checkmark The measurement will include the first anti-v run at T2K, fundamental to solve the degeneracy of δ_{CP}

BACK UP

 $E_{Rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)} \quad \textbf{TZ}$

Error source (# param.)	$\nu_e \text{ sample}$ (sig+bkg)	ν_e sample (sig only)	control sample
ν_{μ} - ν_{e} common (40)	4.4	5.2	6.7
Unconstrained (5)	3.7	3.0	17.8
Detector + FSI(10)	5.1	5.5	5.5
Total (55)	7.6	8.1	19.9

New measurement of production cross section reduced the total uncertainty from 4% to 2%

Future results of NA61 experiments will have a statistical precision improved of 2-3 times

Likelihood fit

Oscillation parameters $sin^2 2\theta_{ee}$ and Δm^2_{41} are estimated through the minimization of the likelihood ratio

- V → the covariance matrix that contains the systematic uncertainties and the correlations
- $f \rightarrow$ vector of nuisance parameters
- $f_0 \rightarrow$ nominal value of systematic parameter

 v_e and γ terms have the same form and are treated in the same way Nuisance parameters are constrained trough a penalty term

MiniBooNE ν_{μ} disappearance result

ND280 selected samples

- ND280 is used to constrain the systematic uncertainties at SK
- Select events w/ ND280 Tracker
- Separate into 3 samples by topology :
 - CC0π: no pions in the final state
 - CC1 π^+ : only $1\pi^+$ in the final state
 - CCother: >1 π ⁺ or >0 π ⁻ or >0 tagged photons

Run1-4 (5.9x10²⁰ p.o.t.)

Measured v_e flux normalization agrees with expectation: $R(v_e) = 1.01 \pm 0.10$ PRD 89 092003, arXiv:1403.2552

ND280 constraint

- In the fit data are binned in $\{p_{\mu}, \varphi_{\mu}\}$
- Only $\nu_{\mu}\,data$ sample is used
- From ~12% to ~7% uncertainty on flux
- Reduce the correlated flux and cross section (Xsec) systematic uncertainties at the far detector

Parameter	Prior to ND280 Constraint	After ND280 Constraint	
M _A ^{QE} (GeV)	1.21 ± 0.45	1.240 ± 0.072	
M _A ^{RES} (GeV)	1.41 ± 0.22	0.965 ± 0.068	
CCQE Norm. E_v < 1.5 GeV	1.00 ± 0.11	0.966 ± 0.076	
CCQE Norm. $1.5 < E_v < 3.5 \text{ GeV}$	1.00 ± 0.30	0.93 ± 0.10	
CCQE Norm. E_v >3.5 GeV	1.00 ± 0.30	0.85 ± 0.11	
CC1 π Norm. E _v <2.5 GeV	1.15 ± 0.32	1.26 ± 0.16	
CC1 π Norm. E _v >2.5 GeV	1.00 ± 0.40	1.12 ± 0.17	
NC1π ⁰ Norm.	0.96 ± 0.33	1.14 ± 0.25	

$\nu_{\mu} + \nu_{e}$ joint analysis

- Simultaneous fit of $v_{\mu}\text{-like}$ and $v_{e}\text{-like}$ events at T2K
- Taken into account correlations between all the oscillation parameters
- Improvement wrt the stand-alone v_e appearance analysis
- Confidence intervals performed with Feldman-Cousins
- Result obtained w/ Run 1-4 data set (6.57 x 10²⁰ POT)

```
Constraint from reactors (PDG 2013):
sin^22\Theta_{13} = 0.095 \pm 0.010
```


Best-fit at $\delta_{CP} = -\pi/2$

T2K selected samples (Run 1-4)

Run 1-4 (6.57 x 10²⁰ POT) neutrino data sample

v_{μ} event selection

- Fully contained fiducial volume
- Single ring µ-like event
- E_{visible} > 200 MeV
- # decay electron ≤ 1

Selected events = 120

Exp. ν_{μ} events (w/o osc) = 446 ± 23 (syst)

ve event selection

- Fully contained fiducial volume
- Single ring e-like events
- E_{visible} > 100 MeV
- No decay electron
- 0 < E_{rec} < 1250 MeV
- π^0 rejection cut

Selected events = 28

Exp. Bkg. events = 4.9 ± 0.6 (syst)

