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T2K experiment

• Neutrino long-baseline experiment (295 km)

• Neutrino flux produced with proton on Carbon target at 30GeV 
interactions (1/100 νe - νμ ratio) 

• Near Detector (ND280) to measure the neutrino flux and cross sections

• Far detector (Super Kamiokande) measure νμ → νe oscillation

• Recent results:

- Discovery of νμ→νe appearance w/ a significance of 7.5𝝈 to ɵ13>0

- First hint of CP violation in the lepton sector
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T2K Experiment
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T2K Neutrino Beam

T2K flux

L=295 km

• 30 GeV proton beam on C target (90 cm)
• 3 magnetic horns (250kA) 
• 𝜈μ from π+ decay  (~96m decay pipe)
• 𝜈e contamination from µ and K
• Muon Monitor (MUMON)

- measure the beam profile and intensity
- monitor the on-axis beam direction

• Beam dump to stop hadrons
• 2.5º off-axis neutrino beam

- low-energy narrow band
- peak at oscillation maximum
- decrease high-energy background

• Hadron production measured by NA61/SHINE 
experiment (CERN)

- tune the flux and reduce the uncertainties
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Beam flux prediction
Beam flux is predicted based on NA61/SHINE π, K production measurements 
and T2K proton beam measurements
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• Fundamental are NA61 hadronic production measurements (pC 30GeV as T2K):
• Interaction rate (production cross section)
• σprod = 233.5 ± 2.8 (stat) ± 2.4 (det) ± 3.6 (mod) mb 

• Pion production 
• Kaon production
• External data : NA61/SHINE (CERN) [1][2], 
Eitchen et al. [3] ,  and Allaby et al. [4]

Largest uncertainty 
comes from hadronic  
interactions

ND280 !e fluxND280 !" flux

 N. Abgrall et al. (NA61/SHINE Collaboration),  Phys. Rev. C 85, 035210 (2012)
T. Eichten et al., Nucl. Phys. B 44 (1972)
J. V. Allaby et al., Tech. Rep. 70-12 (CERN,1970)

[1]
[2] [4]

N. Abgrall et al. (NA61/SHINE Collaboration),  Phys. Rev. C 84, 034604 (2011) [3]

NA61 new results will 
be released soon!!!
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• Magnetized near off-axis detector 280 m far from the neutrino 
production target

ND280 detector

• Neutrino interactions are selected in the Fine Grain Detectors, 
targets of both active polystyrene (CH) scintillator and passive water

• νμ and νe fluxes are measured in order to 
constrain the systematic uncertainties at SK

• Muons and electrons are selected 
using the combination of the TPC and 
Electromagnetic CALorimeter PID

• Measurements of neutrino cross sections 
are performed
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The 3+1 model is an extension of the standard three neutrino mixing

3+1 neutrinos framework

Add a right-handed neutrino (sterile) to the 3 standard flavors

Active neutrinos (νe νμ ντ) can oscillate into sterile neutrinos (νs) 
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Sterile neutrinos don’t interact through standard interactions
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• Hints of additional non standard neutrinos

• Sterile neutrinos cannot be directly detected

• They can be seen only indirectly through appearance or 
disappearance of standard neutrinos

Why sterile neutrinos?

It can be explained adding a sterile neutrino of largest mass ∆m214 ~ O(1eV2)
Phys.Rev. D83, 073006 (2011)

3ν oscillation
non standard oscillation

✓ New theoretical calculations of reactor 
anti-νe fluxes consistent w/ a 3𝝈 deficit 

Reactor anomaly

Phys. Lett. B685, 47 (2010)

Gallium anomaly (GALLEX, 
SAGE experiments)
✓ Deficit of measured anti-νe 

interaction is 2.7𝝈

Short base-line is needed
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- No experimental evidences 
for νμ  disappearance
- Neglect νμ  disappearance 
and νe  appearance (Uμ4 = 0)

Psurv = 1� sin22�ee · sin2

✓
1.267�m2

14L�

E

◆

∆m214 around >1eV2  

The following assumptions are done: 

νe  disappearance at ND280
Search for a deficit of νe at the near detector
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2 mΔ = 0.5 - eeθ22sin

• sin22θee - Δm214 oscillation parameters for νe → νs 

• L → neutrino flight path 

• E → neutrino true energy

Knowledge of the beam flux is very important
99% are νμ → very good νe selection is needed to get a clean sample
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Event selection
νe sample

✓ Tracks starting in FGD

✓ Electron-like PID (dE/dx TPC + EM 
shower ECal)

✓ Reject π0 → γ →e+e- (two close tracks 
+ invariant mass < 50 MeV)

✓ Muon rejection factor ~99.8%

✓Purity ~ 63%
✓Constrain the π0 → γ γ w/ the control 

sample

Beam νe measurement: PRD 89, 092003 (2014)

✓Main background from low 
energy photon conversions:
νμ N → π0 → γ γ →e+e-

✓Can constrain it from the data by 
developing a selection of a 
photon conversion sample

✓ Look for e+e– pair in the TPC and 
reconstruct the invariant mass

✓Purity ~ 92%
✓Not sensitive to νe oscillations 

π0 → γ control sample

Obs. # of evts = 614
Exp. # of evts = 665 ± 51 (syst)

Obs. # of evts = 989
Exp. # of evts = 1236 ± 246 (syst)

Run1-4: 5.9 x 1020 p.o.t.
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Selected distributions
✓Constrain systematic uncertainties fitting the νμ selected sample 

at ND280 (null  oscillations hypothesis)

✓ Flux, XSec, Detector systematic uncertainties (55 parameters)

✓ Events outside the fiducial volume have large uncertainty (30%) 
due to interactions in heavy nuclei, not well known
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Oscillation fit
✓ sin22θee and Δm241 estimated minimizing a Poisson likelihood ratio 

✓ 55 nuisance parameters take into account the systematic uncertainties

✓Constrained by a gaussian penalty term and profiled

✓Calibration “in situ” of the π0 → γ γ simultaneously fitting the νe and the 
control sample

χ2 / ndf = 45.86 / 51

Best-fit values:
sin22ɵee = 1
Δm241 = 2.05 eV2/c4 
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Systematic Uncertainties

Observed p-value wrt null 
oscillation hypothesis is 8.4%

✓Confidence intervals computed w/ Feldman-Cousins method
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More data are needed 
to get conclusions
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Current Status
✓ First sterile search at the near detector in the 3+1 model

✓ Analysis of νe → νs oscillations due to sterile neutrinos has been 
finalized (no νμ disappearance is considered)

✓  sin22ɵee > 0.2 && Δm241
 > 8 eV2/c4 excluded at 95%CL (Preliminary) 

✓  Quite large region of Gallium anomaly as well as a small part of the 
reactor anomaly are rejected at 95% CL

✓Analysis is approved and result presented at the summer 
conferences (“Rencontres de Blois 2014”, “Neutrino 2014”)

✓Writing the paper

✓Next step is to include the numu sample in the analysis and perform 
a joint fit in a more complete 3+1 framework 

✓Extract sin22ɵee, sin22ɵμμ and Δm241 fitting both νμ and νe oscillation 
simultaneously 
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νμ disappearance → measure ɵ23 and Δm232
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νe appearance → measure ɵ13 and δCP 

Open questions: 
- Is CP symmetry violated in lepton sector (δCP≠ 0)?
- Mass hierarchy (sign of Δm231)?
- Is ɵ23 maximal (or which octant)?   

Standard oscillations at T2K

T2K:  Epeak ~ 0.6 GeV, L ~ 295 km (baseline) 

δCP can be measured 
since sin22ɵ13>0

NHIH

Δm232

Δm221

Δm221

Δm213
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T2K far detector: Super-Kamiokande

• Water Cherenkov detector (50 kton)

• Fiducial mass 22.5 kton 

• Inner detector (~11k PMTs)

• Outer detector (2k PMTs) determine fully 
contained events

• Very good e/μ separation 

• Muons misidentified as electron <1% Inner Detector

Outer Detector
Atmospheric 𝝼
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T2K events
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• Low scattering
• Ring with sharp edge 

• Multiple scattering
• EM shower
• Ring with “fuzzy” edge 

• EM shower from π0 →𝜸𝜸
• Can be misidentified as an 
electron 
• Intrinsic 𝜈e component <1%

𝝼μ SIGNAL 𝝼e SIGNAL 𝝼e BACKGROUND

MC MCMC
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T2K selected samples
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𝝂e event selection 

• Fully contained fiducial volume

• Single ring µ-like event

• Evisible > 200 MeV

• # decay electron ≤ 1

𝝂µ event selection 
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Look to 𝝂µ disappearance and
measure ɵ23 and Δm232

• Fully contained fiducial volume

• Single ring e-like events

• Evisible > 100 MeV

• No decay electron

• 0 < Erec < 1250 MeV

• π0 rejection cut

Look to 𝝂e appearance  
and measure ɵ13

Fit both samples simultaneously to search for CP violation 
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Current status

✓New anti-ν run in autumn

✓ Started to work on the νμ - νe joint analysis to study δCP

✓ Study of control samples to constrain the systematics or simply add events 
affected by standard oscillations. Work in progress 

✓Have new results on δCP based on the Run 1-5 data set (first time w/ anti-ν 
at T2K)

✓ Anti-ν data are very important to 
solve the degeneracy in δCP

✓ Sensitivity studies w/ the anti-ν 
run are ongoing as well 
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Conclusions

✓ Performed the production cross section measurement at NA61/SHINE 
experiment, need to constrain the flux at T2K

✓ Search of νe  disappearance due to sterile neutrinos at the near detector has 
been finalized w/o numu oscillations

✓Writing the paper

✓Update the analysis introducing numu oscillations in a more complex joint fit

✓Moved to standard oscillation analysis at the far detector

✓Measurement of δCP and look for hints of CP violation in the leptonic sector

✓ Study of possible control samples 

✓ The measurement will include the first anti-ν run at T2K, fundamental to 
solve the degeneracy of δCP
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BACK UP
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New measurement of production cross section reduced the 
total uncertainty from 4% to 2%

�2009
prod

= 233.5± 4.2 (model)± 1.0 (trigger) mb

Future results of NA61 experiments will have a statistical 
precision improved of 2-3 times
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Likelihood fit
Oscillation parameters sin22θee and Δm241 are estimated through the 
minimization of the likelihood ratio

Nuisance parameters are constrained trough a penalty term

νe  selection  γ selection penalty term

νe and γ terms have the same form and are treated in the same way
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MiniBooNE 𝝼μ disappearance result

arXiv:1208.0322v2
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ND280 selected samples

CC0π CC1π CCother

63% CCQE 39% CC Res 68% DIS

CCQE CC Res DIS

Run1-4 (5.9x1020 p.o.t.)
• ND280 is used to constrain the systematic 

uncertainties at SK

• Select events w/ ND280 Tracker
• Separate into 3 samples by topology :

- CC0π: no pions in the final state
- CC1π+: only 1π+ in the final state
- CCother: >1π+ or >0π - or >0 tagged photons

Measured 𝝂e flux normalization agrees 
with expectation: R(𝝂e) = 1.01 ± 0.10 
PRD 89 092003, arXiv:1403.2552
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ND280 constraint
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• In the fit data are binned in {pμ,ɵμ}
• Only 𝜈μ data sample is used
• From ~12% to ~7% uncertainty on flux
• Reduce the correlated flux and cross 
section (Xsec) systematic uncertainties at 
the far detector

Parameter Prior to ND280 
Constraint

After ND280 
Constraint

M
A

QE (GeV) 1.21 ± 0.45 1.240 ± 0.072

M
A

RES (GeV) 1.41 ± 0.22 0.965 ± 0.068

CCQE Norm. E
ν
<1.5 GeV 1.00 ± 0.11 0.966 ± 0.076

CCQE Norm. 1.5<E
ν
<3.5 GeV 1.00 ± 0.30 0.93 ± 0.10

CCQE Norm. E
ν
>3.5 GeV 1.00 ± 0.30 0.85 ± 0.11

CC1π Norm. E
ν
<2.5 GeV 1.15 ± 0.32 1.26 ± 0.16

CC1π Norm. E
ν
>2.5 GeV 1.00 ± 0.40 1.12 ± 0.17

NC1π0 Norm. 0.96 ± 0.33 1.14 ± 0.25

Systematic 
uncertainties

% variation of Tot 
# of νe events 

% variation of Tot  
# of νμ events 

T2K corr. Flux-Xsec 
(w/o constraint) 2.9 (25.9) 2.7 (21.6)

T2K νμ Flux T2K νe Flux
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𝝼μ + 𝝼e joint analysis
• Simultaneous fit of νμ-like and νe-like events at T2K

• Taken into account correlations between all the oscillation parameters

• Improvement wrt the stand-alone νe appearance analysis

• Confidence intervals performed with Feldman-Cousins

• Result obtained w/ Run 1-4 data set (6.57 x 1020 POT)

NH: -1.18π < δCP < 0.15π

IH:  -0.91π < δCP < -0.08π

90% CL allowed intervals

Best-fit at δCP = -π/2

90% CL excluded regions (NH-IH)Constraint from reactors (PDG 2013): 
sin22ɵ13 = 0.095 ± 0.010 
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reactor/ 
accelerator

Solar/
reactor

atmospheric/ 
accelerator

Majorana phases 
(no effects) 

cij = cos ✓ij

sij = sin ✓ij

sin2(2ɵ23) > 0.95 (90%CL) 

sin2(2ɵ13) > 0.098±0.013 

sin2(2ɵ12) > 0.857±0.024 

SK, MINOS, 
K2K, T2K

 T2K, MINOS, 
DB, RENO, DC

KamLAND, 
SNO, SK

L: neutrino flight path
E: neutrino energy

�m2
21 = 7.58+0.22

�0.26 ⇥ 10�5eV2/c4 |�m2
32| = 2.35+0.12

�0.09 ⇥ 10�3eV2/c4

Standard neutrino oscillations

Δm221

Δm213

Δm232

Δm221

NHIH
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T2K selected samples (Run 1-4)

• Fully contained fiducial volume

• Single ring e-like events

• Evisible > 100 MeV

• No decay electron

• 0 < Erec < 1250 MeV

• π0 rejection cut
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𝝂e event selection 

• Fully contained fiducial volume

• Single ring µ-like event

• Evisible > 200 MeV

• # decay electron ≤ 1

𝝂µ event selection 

Selected events = 28
Exp. Bkg. events = 4.9 ± 0.6 (syst)
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