ETH zürich

Tracker for Anti-Hydrogen Free-Fall measurement

Dipanwita Banerjee Supervisors: Prof. Dr. Andre Rubbia Dr. Paolo Crivelli

ETH Zurich

September 11, 2014

Dipanwita Banerjee Supervisors: Prof.

GBar Detector

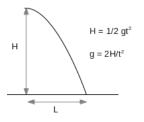
- - Steps of experiment

- - Micromegas Principle
- Results from Simulation

글 에 에 글 어

ETH zürich

- A direct test of the Equivalence Principle with antimatter.
- The acceleration imparted to a body by a gravitational field is independent of the nature of the body : Inertial mass = Gravitational mass
- Indirect tests obtained by comparing the properties of particle and antiparticle.[1] [2] [3]
- No stringent constraints on direct tests with antimatter.(ALPHA ruled out ratios between the gravitational mass and the inertial mass of anti-hydrogen less than -65 and greater than +110)[4]


2 The Experiment

- Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
- 6 Simulations
- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation

B > 4 B >

Experiment

Time of fall = T

ETHzürich

Temperature	Velocity Fluctuation	$\frac{\Delta \overline{g}}{g}$	Detected \overline{H}
1K	100 m/sec	0.01	1.7×10^{8}
1mK	4 m/sec	0.01	1.7×10^{5}
1µK	0.1 m/sec	0.01	170
20µK	0.6 m/sec	0.01	3548
20µK	0.6 m/sec	0.01	9800

Table: Relative precision on \overline{g}

GBar values

L=0.3m and v_{hor} =1.5m/s \rightarrow h=10 cm (T(H) \sim 20 μ K \sim 1 neV) GBar: cooled $\overline{H}^+ \rightarrow$ slow H N.B: For GBar additional velocity fluctuation due to recoil of atom by laser (mentioned later)

Calculation

Classical Free-Fall: $Z=Z_0 + v_0t + \frac{1}{2}gt^2$ Main Perturbation: $\rightarrow v_0$ (unknown) Velocity fluctuation is Temperature equivalent: $v_0 = \sqrt{\frac{2KT}{m}}$ K- Boltzmann constant T- Temperature

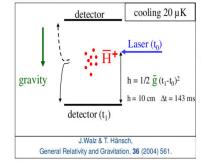
• 3 > 1

ETHzürich

- 2 The Experiment
 - Steps of experiment
- - Micromegas Principle
- Results from Simulation

æ

Steps


- **Produce ion** \overline{H}^+ . $\overline{p} + oPs \rightarrow \overline{H} + e^ \overline{H} + oPs \rightarrow \overline{H}^+ + e^-$
- Capture ion \overline{H}^+ . Segmented RF Paul Trap for capture.
- Sympathetic cooling to 20µK. Sympathetic cooling using Be⁺ ions.
- Photodetachment of e⁺. Using laser. Laser shot gives the start time.
- Time of flight.

Detection of \overline{H} annihilation gives the stop

time and thus the time of flight

Improve velocity dispersion

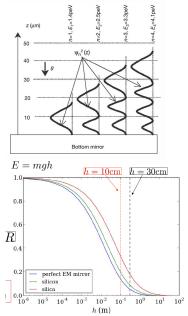
Photodetachment of $e^+ \rightarrow \text{Additional recoil velocity} \rightarrow \text{Additional velocity fluctuation}$ Threshold energy = \overline{H}^+ binding energy = 0.76 eV Energy above threshold, ΔE , for laser $\sim 15 \mu \text{eV}$ Velocity Shaping using Quantum Reflections \rightarrow Reduced velocity dispersion \rightarrow Get required precision for fewer statistics.

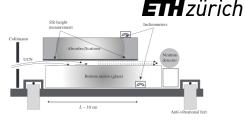
ETHzürich

ETH zürich

The Experiment

Steps of experiment


Shaping Velocity

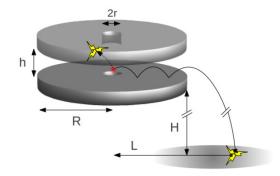

- Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle

6 Simulations

- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation

Quantum Reflection

The probability of neutron tunneling through the gravitational barrier at height z corresponding to the n^{th} quantum state is proportional to the square of the wave-function $\Psi_n^2(z)$. E_n is the energy of the n^{th} quantum state [5]


Due to the high efficiency of Quantum Reflections at small energies because of the Casimir interaction, atoms with sufficiently low vertical velocities may bounce off the bottom mirror. This phenomena has already been demonstrated for neutrons in a study of the neutron quantum states in the potential well formed by the earth's gravitational field and a horizontal mirror [6].

Dipanwita Banerjee Supervisors: Prof.

September 11, 2014

Shaper

To shape the vertical velocity to reduce the dispersion, a similar shaping scheme with a bottom mirror is envisaged. For this $\Delta v = \sqrt{2\overline{g}h}$ Smaller the height h, lesser will be the velocity dispersion and lesser the required statistics for the aimed precision on \overline{g} .

ETH zürich

- 1 Motivation
 - The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
- 6 Simulations
- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation

ETH zürich

The calculation of \overline{g} thus comprises calculating the following:

- Total time of flight(T) = Time of detection of annihilation-Time of laser shot.
- Time of free-fall = Total time of flight-Time in shaper.

• Time in shaper =
$$\frac{R}{v_{horizontal}}$$

• $v_{horizontal} = \frac{L}{T}$

우리 신경에 문화

ETH zürich

The calculation of \overline{g} thus comprises calculating the following:

- Total time of flight(T) = Time of detection of annihilation-Time of laser shot.
- Time of free-fall = Total time of flight-Time in shaper.
- Time in shaper = $\frac{R}{v_{horizontal}}$
- $V_{horizontal} = \frac{L}{T}$

Thus L needs to be measured accurately to improve resolution on \overline{g} .

ETH zürich

1 Motivation

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
 - 6 Simulations
 - *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- Ø Detector Design
- 10 Conclusion from Simulation

ETH zürich

My work involves building the detector for the experiment to reconstruct the vertex of annihilation. For the first phase of the experiment to reach 1% precision on \overline{g} a vertex resolution ~4mm is necessary.

- Initially a TPC was thought to be used for the pion track reconstruction. But my simulations showed a XY Microstrip Micromegas achieves much better spatial resolution.
- Advantages of the Microstrip Micromegas includes:
 - No need for drift time calculation for track points since the X-Y strips give directly the position.
 - Much reduced HV(few hundred volts instead of kV)
 - Much lighter detector.
 - Spatial resolution is better.
 - Lesser cost.

★ E ► < E ►</p>

э.

ETH zürich

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
 - 6 Simulations
 - *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- Ø Detector Design
- 10 Conclusion from Simulation

∃ ∃ >

ETH zürich

• Two-stage parallel plate avalanche chamber.

ETH zürich

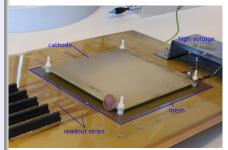
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

- Two-stage parallel plate avalanche chamber.
- Ni electroformed micromesh cathodes.

ETH zürich

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

- Two-stage parallel plate avalanche chamber.
- Ni electroformed micromesh cathodes.
- 3mm conversion gap between drift cathode and the mesh with E-Field of 100-1000V/cm.

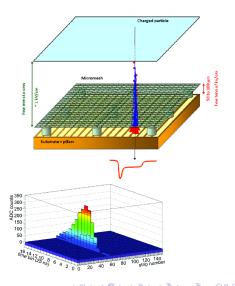

ETH zürich

(日) (同) (目) (日) (日) []

- Two-stage parallel plate avalanche chamber.
- Ni electroformed micromesh cathodes.
- 3mm conversion gap between drift cathode and the mesh with E-Field of 100-1000V/cm.
- Amplification gap of 128 μm between the mesh and the anode strips of pitch $\sim 320\mu m$ with a high E-Field of 40-50kV/cm.

ETH zürich

- Two-stage parallel plate avalanche chamber.
- Ni electroformed micromesh cathodes.
- 3mm conversion gap between drift cathode and the mesh with E-Field of 100-1000V/cm.
- Amplification gap of 128 μm between the mesh and the anode strips of pitch $\sim 320\mu m$ with a high E-Field of 40-50kV/cm.
- 150µm diameter epoxy spacers placed every 2mm between anode and mesh to maintain parallelism.



4 E b

Principle of Operation

ETH zürich

- Incoming particle ionizes gas (eg:Ar-C₄H₁₀, ArCF₄ etc. mixture few mbars above atmospheric pressure).
- Electrons drift towards the mesh from the conversion gap under applied electric field.
- Electrons enter the amplification region and produces an avalanche like secondary ionization due to strong electric field.
- Signal induced on the strips is a sum of the electron and ion signal(e⁻signal rise time ~ 1ns followed by the ion tail ~ 100ns depending on gas mixture and amplification gap).

XY Micromegas

ETH zürich

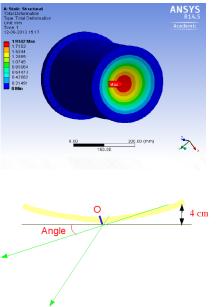
XY Micromegas for two co-ordinate readout from the same gas gap:

separated by $70\mu m$ thick layer of insulator. Varying strip width to compensate for the weak capacitive coupling to the X-strips. Achieved charge ratio X:Y=1:2.4. Spatial resolution achieved for each strip layer ~ 80 microns.

Crossed strips (R16)

ETHzürich

- - Steps of experiment


- - Micromegas Principle

6 Simulations

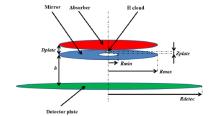
- Results from Simulation

Resolution limitations

ETH zürich

- The resolution is limited by the intrinsic detector resolution and multiple scattering in the annihilation plane and the detector material.
- It would be ideal to make the annihilation plane as thin as possible to limit multiple scattering but due to vacuum deformation we can't make it too thin.
- Vacuum deformation was simulated using ANSYS for different thicknesses and materials to estimate the minimum plane thickness required.
- The plane could have been thinner for a round bottom cylinder but that worsens the resolution due to the longer lever arm for angular tracks as shown in the figure.
- For a flat bottom cylinder simulations showed a plane thickness ~ 4mm of Stainless Steel is the accepted option (staying under the elastic deformation limit) with a 2mm deformation.

ETH zürich

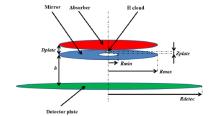

1 Motivation

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle

6) Simulations

- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- Detector Design
- 10 Conclusion from Simulation

ETH zürich



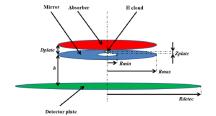
 A Geant4 code was written to simulate anti-hydrogen annihilation.

Dipanwita Banerjee Supervisors: Prof.


ETH zürich

- A Geant4 code was written to simulate anti-hydrogen annihilation.
- The motion of the anti-hydrogen through the shaper was added to the code and its subsequent position on the detector was obtained. The parameters considered for the simulation:

ETH zürich

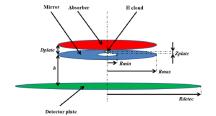


- A Geant4 code was written to simulate anti-hydrogen annihilation.
- The motion of the anti-hydrogen through the shaper was added to the code and its subsequent position on the detector was obtained. The parameters considered for the simulation:
 - Free-fall height = 10cm
 - $\Delta E = 15 \mu \text{eV}$ (laser energy above threshold)
 - $T = 10\mu K$, $\epsilon = 3$ (ratio of horizontal to vertical temperature)
 - ZPlate = 1.5mm Dplate = 3mm

 $R_{min} = 5$ mm $R_{max} = 30$ mm

September 11, 2014

ETH zürich

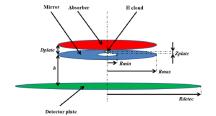


- A Geant4 code was written to simulate anti-hydrogen annihilation.
- The motion of the anti-hydrogen through the shaper was added to the code and its subsequent position on the detector was obtained. The parameters considered for the simulation:
 - Free-fall height = 10cm
 - $\Delta E = 15 \mu \text{eV}$ (laser energy above threshold)
 - T = 10 μ K, ϵ =3 (ratio of horizontal to vertical temperature)
 - ZPlate = 1.5mm Dplate = 3mm

 $R_{min} = 5$ mm $R_{max} = 30$ mm

 This position was taken as the Primary Vertex Position for an anti-hydrogen annihilation.

ETH zürich



- A Geant4 code was written to simulate anti-hydrogen annihilation.
- The motion of the anti-hydrogen through the shaper was added to the code and its subsequent position on the detector was obtained. The parameters considered for the simulation:
 - Free-fall height = 10cm
 - $\Delta E = 15 \mu \text{eV}$ (laser energy above threshold)
 - T = $10\mu K$, ϵ =3 (ratio of horizontal to vertical temperature)
 - ZPlate = 1.5mm Dplate = 3mm

 $R_{min} = 5$ mm $R_{max} = 30$ mm

- This position was taken as the Primary Vertex Position for an anti-hydrogen annihilation.
- The annihilation chamber is a 50cm diameter 4mm thick cylinder with 50cm × 50cm Micromegas modules surrounding the cylinder on the four sides and bottom. In this configuration the corners at the sides are not covered.

ETH zürich

- A Geant4 code was written to simulate anti-hydrogen annihilation.
- The motion of the anti-hydrogen through the shaper was added to the code and its subsequent position on the detector was obtained. The parameters considered for the simulation:
 - Free-fall height = 10cm
 - $\Delta E=15\mu \text{eV}$ (laser energy above threshold)
 - $T = 10\mu K$, ϵ =3 (ratio of horizontal to vertical temperature)
 - ZPlate = 1.5mm Dplate = 3mm

 $R_{min} = 5$ mm $R_{max} = 30$ mm

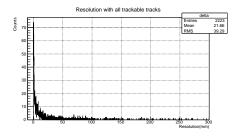
- This position was taken as the Primary Vertex Position for an anti-hydrogen annihilation.
- The annihilation chamber is a 50cm diameter 4mm thick cylinder with 50cm × 50cm Micromegas modules surrounding the cylinder on the four sides and bottom. In this configuration the corners at the sides are not covered.
- The resolution for vertex reconstruction is estimated and compared tracking all tracks and only the ones through the bottom detector modules with a time-cut.

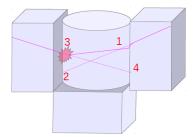
ETH zürich

1 Motivation

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle

6) Simulations

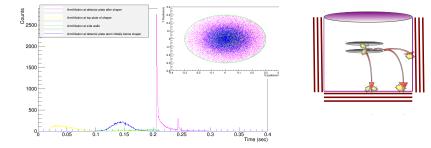

- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation


A 3 >

Results

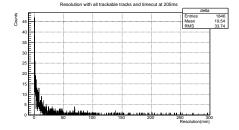
ETH zürich

The plot shows a long tail which is because of the annihilation on the side walls. With the side annihilation there is always an ambiguity in the position of annihilation with there being two possibilities on two wall faces.



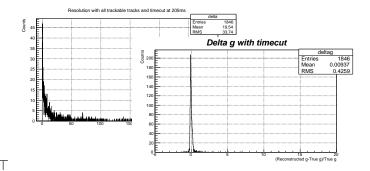
Time Distribution

ETH zürich

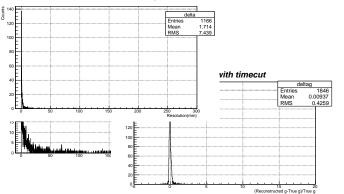

The time distribution shows a time cut at \sim 205ms will include only the events with annihilation near or at the bottom plate.

3.1

Results


ETH zürich

With the time cut we have 83% of the events through the shaper with $\sigma_g = 0.43$. We still have the tail as we include the side tracks for reconstruction. Using only the down tracks for vertex reconstruction we eliminate the tail with an improved $\sigma_g = 0.13$. Thus to achieve 1% resolution on g we will need around 170 detected events with this scheme.


Results

ETH zürich

With the time cut we have 83% of the events through the shaper with $\sigma_g = 0.43$. We still have the tail as we include the side tracks for reconstruction. Using only the down tracks for vertex reconstruction we eliminate the tail with an improved $\sigma_g = 0.13$. Thus to achieve 1% resolution on g we will need around 170 detected events with this scheme.

Results


Resolution with all trackable tracks and timecut at 205ms with only down tracks

With the time cut we have 83% of the events through the shaper with $\sigma_g = 0.43$. We still have the tail as we include the side tracks for reconstruction. Using only the down tracks for vertex reconstruction we eliminate the tail with an improved $\sigma_g = 0.13$. Thus to achieve 1% resolution on g we will need around 170 detected events with this scheme.

ETHzürich

Results

ETH zürich

With the time cut we have 83% of the events through the shaper with $\sigma_g = 0.43$. We still have the tail as we include the side tracks for reconstruction. Using only the down tracks for vertex reconstruction we eliminate the tail with an improved $\sigma_g = 0.13$. Thus to achieve 1% resolution on g we will need around 170 detected events with this scheme.

ヘロト 人間 とくほと くほとう

3

Efficiency

ETH zürich

Table: Efficiency of tracking

	Full Coverage at the sides	Corners not covered
Total number of events simulated	10000	10000
Number of events through shaper	2223	2223
Events with time cut at 205ms	1846	1846
Events with the time cut		
and at least 1 trackable		
track through the bottom modules	1166	1166
Events with the time cut		
and at least 2 trackable		
tracks with 1 going		
through the bottom modules	956	934
Events with the time cut		
and at least 3 trackable		
tracks with 1 going		
through the bottom modules	425	403

< 🗇 🕨

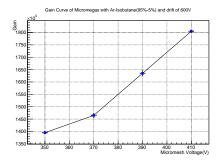
글에 귀절에 다

æ

GBar

ETH zürich

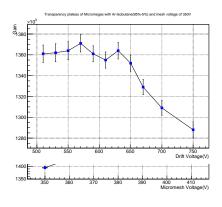
1 Motivation


- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
- 6 Simulations
- Resolution for Vertex reconstruction Estimation
 Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation

Test Bench

ETH zürich

A test bench is set up at ETH, Zurich with a 1-D $10 \text{cm} \times 6 \text{cm}$ Micromegas prototype received from Saclay. Preliminary tests to characterize the detector have already been performed reading signals off the mesh. Electronics to read the strips will be available soon.



Test Bench

ETH zürich

A test bench is set up at ETH, Zurich with a 1-D $10 \text{cm} \times 6 \text{cm}$ Micromegas prototype received from Saclay. Preliminary tests to characterize the detector have already been performed reading signals off the mesh. Electronics to read the strips will be available soon.

GBar Detector

GBar

ETH zürich

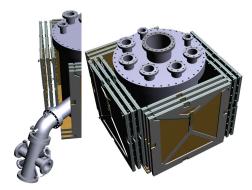
1 Motivation

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
- 6 Simulations
- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
 - **0** Conclusion from Simulation

3 > 4 3 >

Detector Geometry

ETH zürich


Detector Geometry. Production of a prototype with three detector modules together with the mechanics and electronics is foreseen for testing with cosmics by beginning next year.

Detector Geometry

ETH zürich

Detector Geometry. Production of a prototype with three detector modules together with the mechanics and electronics is foreseen for testing with cosmics by beginning next year.

Detector Geometry

ETH zürich

Detector Geometry. Production of a prototype with three detector modules together with the mechanics and electronics is foreseen for testing with cosmics by beginning next year.

GBar

ETH zürich

1 Motivation

- The Experiment
 - Steps of experiment
- 3 Shaping Velocity
- 7 Final Experiment measurement steps
- 5 My Work
 - Micromegas Principle
- 6 Simulations
- *Resolution for Vertex reconstruction Estimation* Results from Simulation
- 8 Micromegas Test Bench
- 9 Detector Design
- 10 Conclusion from Simulation

ETH zürich

• From simulations the estimated spatial resolution for vertex reconstruction is ~ 1.5 mm tracking only the downward going tracks for a 4mm thick Stainless Steel detector cylinder.

ETH zürich

- From simulations the estimated spatial resolution for vertex reconstruction is ~ 1.5 mm tracking only the downward going tracks for a 4mm thick Stainless Steel detector cylinder.
- With this scheme to achieve the required precision $(1\% \text{ on } \overline{g}) \sim 170$ detected events $(\sim 1420 \overline{H}^+)$ is required. The side tracks will be used as a Veto to be sure of an annihilation event.

ETH zürich

- From simulations the estimated spatial resolution for vertex reconstruction is ~ 1.5 mm tracking only the downward going tracks for a 4mm thick Stainless Steel detector cylinder.
- With this scheme to achieve the required precision $(1\% \text{ on } \overline{g}) \sim 170$ detected events $(\sim 1420 \overline{H}^+)$ is required. The side tracks will be used as a Veto to be sure of an annihilation event.
- \bullet This improves σ_g by ${\sim}70\%$ compared with only the timecut.

ETH zürich

- From simulations the estimated spatial resolution for vertex reconstruction is ~ 1.5 mm tracking only the downward going tracks for a 4mm thick Stainless Steel detector cylinder.
- With this scheme to achieve the required precision $(1\% \text{ on } \overline{g}) \sim 170$ detected events $(\sim 1420 \overline{H}^+)$ is required. The side tracks will be used as a Veto to be sure of an annihilation event.
- \bullet This improves σ_g by ${\sim}70\%$ compared with only the timecut.
- The number of 50cm \times 50cm Micromegas modules required for this set-up is 15.

ETH zürich

- From simulations the estimated spatial resolution for vertex reconstruction is ~ 1.5 mm tracking only the downward going tracks for a 4mm thick Stainless Steel detector cylinder.
- With this scheme to achieve the required precision $(1\% \text{ on } \overline{g}) \sim 170$ detected events $(\sim 1420 \overline{H}^+)$ is required. The side tracks will be used as a Veto to be sure of an annihilation event.
- \bullet This improves σ_g by ${\sim}70\%$ compared with only the timecut.
- The number of 50cm×50cm Micromegas modules required for this set-up is 15.
- The production of a prototype (a triplet) with mechanics and electronics is foreseen following which it will be tested with cosmics.

3

ETH zürich

Tests of the Equivalence Principle with neutral kaons. Physics Letters B452 1999 425-433

Testing the principle of equivalence by supernova neutrinos. M.M Guzzo, H. Nunokawa et al. doi:10.1016/S0927-6505(02)00149-4

Nieto and T.Goldman. The arguments against antigravity and the Gravitational Accelaration of Antimatter, Phys. Rep. 205, (1991),221.

Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Communications 4, Article number:1785 doi:10.1038/ncomms2787

Quantum states of neutrons in the Earth's gravitational field. Valery V.Nesvizhevsky et al. Nature 415(2002)297

Quantum reflection of antihydrogen from the Casimir potential above matter slabs. G. Dufour, A. Voronin, V.V. Nesvizhevsky et al

Phys.Rev.A87:012901

E + 4 E +

Thank You!!!

September 11, 2014

3

35 / 35

・ロト ・同ト ・ヨト ・ヨト