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Overview

@ Introduction to CLIC

© Requirements for the CLIC vertex detector
© R&D on sensor and readout

© GranT4 simulations and digitisation

© Active-edge sensor optimisation studies

@ Summary
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@ Introduction to CLIC
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The Compact Linear Collider (CLIC)

@ CLIC is a concept for a future eT e~ linear collider.
@ Energy range: 350 GeV to 3 TeV.
@ Provides precision measurements of:

e Standard Model processes (Higgs, top).

e new physics potentially discovered at 13-14 TeV LHC.
e search for new physics: unique sensitivity to particles with electroweak charge.

@ A possible staged realisation of R
CLIC on the CERN site (with a site

length of 48 km for 3 TeV):
o two-beam acceleration scheme to

reach high gradients of
~100 MV/m.

s CLIC3TeV

Jura Mountains
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Beam profile

20ms

e For CLIC: L‘—L
e Bunch crossings (BX): every 0.5 ns. Trains (=) k

e Train duration: 156 ns (312 bunches).
e Train repetition: 20 ms (50 Hz).
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@ Short train duration implies:

@ triggerless readout of the detectors.
@ power pulsing: allows to reduce the average power dissipation.

CLIC at 3 TeV LHC at 14 TeV

BX separation [ns] 0.5 25
Crossing angle 20 mrad 200 prad
Instantaneous luminosity [cm~2s7] 6 x 103 1x10%
1st trigger level [#selected:#total events] 11 ~1:400
Data rate after 1st trigger level [GBytes/s| 200 200
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Beam-induced backgrounds at CLIC

@ Backgrounds: ~ S Pars
o ete™ pairs: low pr, forward peaked, limits the inner radius @: \o

of the VXD.
e vy —hadrons: larger pr particles.

Beamstrahlung

CLIC_ILD incoherent pairs +yy — hadrons: silicon hits, no safety factors
F T T T

T
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@ Each train consists of: o ]

. . 200 - 3 |
e At most 1 interesting event. : ! 14,
e > 30000 background particles 1ok Ly > | E

inside the detector.
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@ Occupancy in the pixel detectors for each train (during 156 ns): ~ 3% for
innermost layers.
@ Radiation exposure of the vertex detector is moderate:
o Total ionising dose (TID): 200 Gy/yr
o Non-ionising energy loss (NIEL): 10" neq/cm?®/yr (for ATLAS phase 1:

1015ne cm?/yr
ETH i " 1Y) @ ©)
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Interaction point (IP)

180T T T T T
[ ATLAS Online Luminosity

B Vs=8TeV, ij =20.8fb", <u>=20.7
3 Vs=7TeV, [Lat=521", qu> = 9.1

@ For LHC:

o the IP is smeared over ~ 5cm.
o At current configuration: > 20 vertices per
each BX (at 40 MHz).

Recorded Luminosity [pb “70.1]
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e For CLIC:
e The IP is point like and can be used as constraint
for the track reconstruction.
e With 312 BXs/train, the beam-induced background
overlaps at one interaction point. We are interested
in the reconstruction of secondary vertices.

CLIC at 3 TeV LHC at 14 TeV

IP size in x/y direction [nm] 45/1 15000,/15000 =
ETH 7} Ensize in z direction [pum] 44 50000 @j
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Background rejection

@ Time slicing of ~ 10ns in the vertex detector and ~ 1ns in calorimeters
allows to reduce the impact of beam-induced backgrounds on interesting
physics events in a bunch of 156 ns.

@ The background is suppressed offline.

@ Reconstructed particles in a simulated ete™ — HtH~ — tbbt:

@ 60 BX vy — hadrons: o After tight timing cuts:
1.4 TeV background 0.1 TeV background
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CLIC detector concept

Vertex
detector

~~ Fine grained
(PFA)
*; calorimetry
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© Requirements for the CLIC vertex detector
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Vertex detector requirements

o Efficient tagging of heavy quarks through a
precise determination of displaced vertices
can be achieved by:

o multi-layer VXD: 5-6 layers in the barrel
and 4-6 disks = ongoing optimisation
studies.

e single point resolution of ~ 3 pm
achievable with pixel pitches of
25 umx25 pm, analog readout (CMS
pixels: 100 pmx150 pm).

e < 0.2% Xo for the beam-pipe and each
detection layer = implies:

airflow cooling
@ no active cooling elements can be placed

in the vertex detector (el

@ power dissipation of the readout

electronics ~ 50 mW /cm?
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© R&D on sensor and readout
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R&D on sensor and readout

sensor on 100 um ﬂ}neplx Asic

@ The ultimate goal for CLIC:

o low material budget and small pitch: 50 pm
sensor on 50 pm ASIC with 25 pm pixel pitch.

acam assembly w. 50 um active- 1
14 mm

@ Thin-sensor R&D:
e Timepix chips (55 pum pixel pitch) are used to
study the feasibility of ultra-thin sensors.
o use simulations to extrapolate to pixels with a

pitch of 25 pm.

o CLICpix chip demonstrator:

e matrix of 64 x 64 pixels, 25 pm pixel pitch.

e 65nm CMOS technology

e simultaneous measurement of time of
arrival (TOA) and time over threshold
(TOT) per pixel.

e compatible with power pulsing scheme.

selectable compression logic. eb @\
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Ultra-thin sensor assemblies and test beams

@ Test-beam campaign at DESY in 2013-2014: test assemblies with
50 pm-300 pm sensors on 100 pm-750 pm Timepix chiE) thicknes

DATURA telescope

o DESY Il beam: 1-6 GeV electron.

@ The EUDET telescope is used to
reconstruct the tracks and
extrapolate them on the device
under test (DUT).

@ The telescope contains 6 planes of
Mimosa26 pixel sensors with a
tracking resolution of ~3 pm at
5.6 GeV.

@ The DUT is placed between layer 3
and 4 of the telescope with the

. | I__I__
possibility of rotation. —"H—‘H—_I I @\
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@ GeaNT4 simulations and digitisation
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ALLPix simulation framework

@ ALLPix: a general purpose pixel detector

simulation framework (in C/C++) based on W

GEANT4.

@ Fully customisable detector geometry: “ 3 |
o thickness, pitch, bump geometry, material @y {
o Used as a digitiser test bench for ATLAS S

Actual test-beam telescope

and CLICdp.
o Digitisers for the test-beam simulation:
e Mimosa26 digitiser for the telescope planes
= based on data. Test-beam telescope simulation

e Timepix digitiser = based on
semiconductor physics.

o Goal: whood ,,l’i-g-,, g
o simulate the test-beam setup. | %R QJ’. == & >

o extrapolate results for small-pitch pixels.
e improve digitisation models for

ful)-detector simulation. @
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Niloufar Alipour Tehrani (CERN-ETHZ) 12 September 2014 16 / 24



Telescope simulation vs. data: cluster sizes

@ Simulation of the telescope (without = 80 _baa_
DUT) 9 I
- £ 60 o
o The digitiser for the telescope g I
sensors (Mimosa26) is tuned to a0l e o
match the data. [
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Telescope simulation vs. data: residuals

@ The simulation and the data have very similar tracking resolution after the
tuning of the simulation.
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DUT simulation vs. data

o GEANT4 provides the passing of particles and the energy deposited by
ionisation.
o Timepix digitiser simulates:
e semiconductor physics using theoretical models and TCAD simulations.
o the Timepix chip (analog and digital parts).
e sensor and ASIC noise.
@ For 100 pm sensor on 750 pm Timepix (without including noise in simulation)
with Vjpi2s=35V (over-depleted sensor) and 5.6 GeV electrons:

=
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@ More tuning is needed for the simulation of the DUT for a better match withJ
data!
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© Active-edge sensor optimisation studies
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Active-edge sensor optimisation studies

@ Active edge sensors can reduce significantly the material budget and the dead
areas of the detector.
@ To control the voltage at the edge, an implantation is done on the sidewall
= the DRIE (deep reaction ion etching) process.
o extends the backside electrode to the edge.
e a voltage drop between the edge and the first pixel is created = early
breakdown in silicon for electric fields higher than 3 x 10° V/cm.

Guard ring

@ Guard rings: establish a smooth
voltage drop between the edge and
the first pixel. [ iy

ETHziirich
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Guard ring solutions

@ TCAD simulation tools are used to model semiconductor devices fabrication
and device operation.

@ No guard ring @ Grounded guard ring o Floating guard ring

@ No guard ring: a break down can occur for Vj,s = —50 V on the edge of the
first pixel.

@ Grounded guard ring: the E-field is significantly reduced on the first pixel but
a part of the signal in the edge region is lost (it is collected by the guard
ring).

o Floated guard ring: a breakdown risk still exists for very high bias voltages

but the inactive region is highly minimised.

@ Assemblies with active-edge sensor from Advacam are under process. &
ETHziirich
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@ Summary
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@ Challenging demands on the CLIC vertex detector
o Validation of GEANT4 simulation models with test-beam results

@ Sensor layout optimisation based on TCAD simulations

Thank ntion!
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Backup slides
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Guard ring solutions: Electric field and pot

@ Grounded guard ring increases the @ Floated guard ring creates a
depletion region but a part of the compromise between the depletion
signal in the edge region is lost. region and the inactive region.
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