Test-beam characterisation and simulations for hybrid-pixel readout assemblies with ultra-thin sensors for the CLIC vertex detector

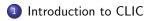
#### Niloufar Alipour Tehrani (CERN & ETH Zürich)

Zürich PhD seminar 2014 University of Zürich 12 September 2014





### Introduction to CLIC


- 2 Requirements for the CLIC vertex detector
- R&D on sensor and readout
- GEANT4 simulations and digitisation
- 5 Active-edge sensor optimisation studies







#### **ETH** zürich



Requirements for the CLIC vertex detector

3 R&D on sensor and readout

4 GEANT4 simulations and digitisation

5 Active-edge sensor optimisation studies



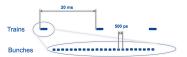


#### **ETH** zürich

# The Compact Linear Collider (CLIC)

- CLIC is a concept for a future  $e^+e^-$  linear collider.
- Energy range: 350 GeV to 3 TeV.
- Provides precision measurements of:
  - Standard Model processes (Higgs, top).
  - new physics potentially discovered at 13-14 TeV LHC.
  - search for new physics: unique sensitivity to particles with electroweak charge.

- A possible staged realisation of CLIC on the CERN site (with a site length of 48 km for 3 TeV):
  - two-beam acceleration scheme to reach high gradients of ~100 MV/m.




#### **ETH** zürich

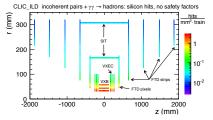
- For CLIC:
  - Bunch crossings (BX): every 0.5 ns.
  - Train duration: 156 ns (312 bunches).
  - Train repetition: 20 ms (50 Hz).
  - Short train duration implies:
    - triggerless readout of the detectors.
    - Ø power pulsing: allows to reduce the average power dissipation.

|                                              | CLIC at 3 TeV    | LHC at 14 TeV    |
|----------------------------------------------|------------------|------------------|
| BX separation [ns]                           | 0.5              | 25               |
| Crossing angle                               | 20 mrad          | 200 µrad         |
| Instantaneous luminosity [ $cm^{-2}s^{-1}$ ] | $6	imes 10^{34}$ | $1	imes 10^{34}$ |
| 1st trigger level [#selected:#total events]  | 1:1              | ${\sim}1{:}400$  |
| Data rate after 1st trigger level [GBytes/s] | 200              | 200              |

#### **ETH** zürich



# Beam-induced backgrounds at CLIC

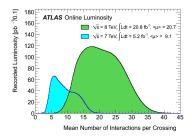

- Backgrounds:
  - $e^+e^-$  pairs: low  $p_T$ , forward peaked, limits the inner radius of the VXD.
  - $\gamma\gamma \rightarrow \text{hadrons:}$  larger  $p_T$  particles.
- Each train consists of:
  - At most 1 interesting event.
  - > 30000 background particles inside the detector.

- Occupancy in the pixel detectors for each train (during 156 ns):  $\sim$  3% for innermost layers.

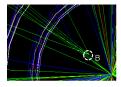
- Radiation exposure of the vertex detector is moderate:
  - Total ionising dose (TID): 200 Gy/yr
  - Non-ionising energy loss (NIEL):  $10^{11} n_{eq}/cm^2/yr$  (for ATLAS phase 1:

 $10^{15} n_{eq}/cm^2/yr$ )

): 200 Gy/yr (NIEL):  $10^{11}n_{\odot}/cm^2/yr$  (for ATLAS phase 1:



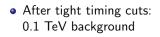


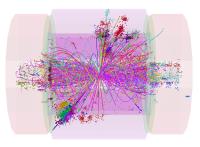


# Interaction point (IP)

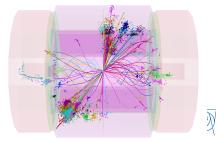
- For LHC:
  - the IP is smeared over  $\sim 5\,\text{cm}.$
  - At current configuration: > 20 vertices per each BX (at 40 MHz).





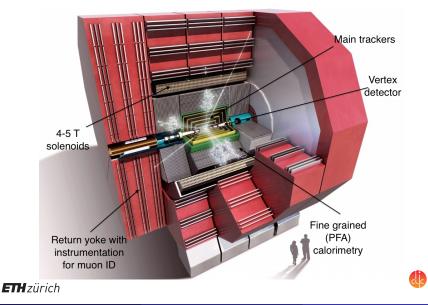

- For CLIC:
  - The IP is point like and can be used as constraint for the track reconstruction.
  - With 312 BXs/train, the beam-induced background overlaps at one interaction point. We are interested in the reconstruction of secondary vertices.





|                                                 | CLIC at 3 TeV | LHC at 14 TeV | - |
|-------------------------------------------------|---------------|---------------|---|
| IP size in x/y direction [nm]                   | 45/1          | 15000/15000   |   |
| <b>ETH</b> zürich size in z direction $[\mu m]$ | 44            | 50000         |   |

### Background rejection

- Time slicing of  $\sim$  10 ns in the vertex detector and  $\sim$  1 ns in calorimeters allows to reduce the impact of beam-induced backgrounds on interesting physics events in a bunch of 156 ns.
- The background is suppressed offline.
- Reconstructed particles in a simulated  $e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t}$ :
  - 60 BX  $\gamma\gamma \rightarrow$  hadrons: 1.4 TeV background








I T I

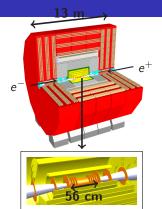
## CLIC detector concept



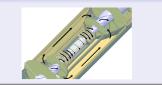


#### 2 Requirements for the CLIC vertex detector

- 3 R&D on sensor and readout
- 4 GEANT4 simulations and digitisation
- 5 Active-edge sensor optimisation studies







#### **ETH** zürich

## Vertex detector requirements

- Efficient tagging of heavy quarks through a precise determination of displaced vertices can be achieved by:
  - multi-layer VXD: 5-6 layers in the barrel and 4-6 disks ⇒ ongoing optimisation studies.
  - single point resolution of  $\sim 3\,\mu\text{m}$  achievable with pixel pitches of  $25\,\mu\text{m}{\times}25\,\mu\text{m}$ , analog readout (CMS pixels:  $100\,\mu\text{m}{\times}150\,\mu\text{m}$ ).
  - < 0.2%  $X_0$  for the beam-pipe and each detection layer  $\Rightarrow$  implies:
    - no active cooling elements can be placed in the vertex detector forced airflow cooling
    - power dissipation of the readout electronics  $\approx 50 \ mW/cm^2$  • power pulsing



### airflow cooling



#### Niloufar Alipour Tehrani (CERN-ETHZ)

**ETH** zürich



Requirements for the CLIC vertex detector

#### 8 R&D on sensor and readout

4 GEANT4 simulations and digitisation

5 Active-edge sensor optimisation studies

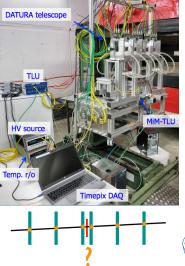




#### **ETH** zürich

## R&D on sensor and readout

- The ultimate goal for CLIC:
  - low material budget and small pitch: 50 μm sensor on 50 μm ASIC with 25 μm pixel pitch.
- Thin-sensor R&D:
  - Timepix chips (55 µm pixel pitch) are used to study the feasibility of ultra-thin sensors.
  - use simulations to extrapolate to pixels with a pitch of 25 μm.
- CLICpix chip demonstrator:
  - matrix of  $64 \times 64$  pixels,  $25 \,\mu\text{m}$  pixel pitch.
  - 65 nm CMOS technology
  - simultaneous measurement of time of arrival (TOA) and time over threshold (TOT) per pixel.
  - compatible with power pulsing scheme.
- selectable compression logic.








### Ultra-thin sensor assemblies and test beams

- Test-beam campaign at DESY in 2013-2014: test assemblies with 50 μm-300 μm sensors on 100 μm-750 μm Timepix chip thickness.
- DESY II beam: 1-6 GeV electron.
- The EUDET telescope is used to reconstruct the tracks and extrapolate them on the device under test (DUT).
- The telescope contains 6 planes of Mimosa26 pixel sensors with a tracking resolution of  $\sim$ 3 µm at 5.6 GeV.
- The DUT is placed between layer 3 and 4 of the telescope with the possibility of rotation.



#### **ETH** zürich



Requirements for the CLIC vertex detector

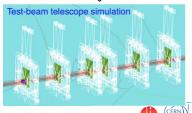
3 R&D on sensor and readout

GEANT4 simulations and digitisation

5 Active-edge sensor optimisation studies

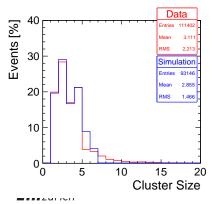


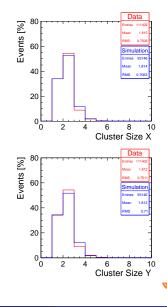



**ETH** zürich

# ALLPix simulation framework

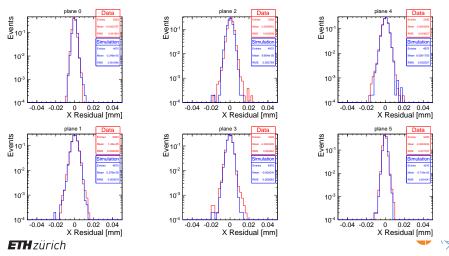
- ALLPix: a general purpose pixel detector simulation framework (in C/C++) based on GEANT4.
- Fully customisable detector geometry:
  - thickness, pitch, bump geometry, material
- Used as a digitiser test bench for ATLAS and CLICdp.
- Digitisers for the test-beam simulation:
  - Mimosa26 digitiser for the telescope planes  $\Rightarrow$  based on data.
  - Timepix digitiser ⇒ based on semiconductor physics.
- Goal:
  - simulate the test-beam setup.
  - extrapolate results for small-pitch pixels.
  - improve digitisation models for
- full-detector simulation.



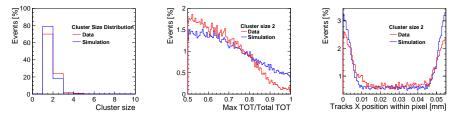



### Telescope simulation vs. data: cluster sizes


- Simulation of the telescope (without DUT)
- The digitiser for the telescope sensors (Mimosa26) is tuned to match the data.






### Telescope simulation vs. data: residuals

• The simulation and the data have very similar tracking resolution after the tuning of the simulation.



### DUT simulation vs. data

- GEANT4 provides the passing of particles and the energy deposited by ionisation.
- Timepix digitiser simulates:
  - semiconductor physics using theoretical models and TCAD simulations.
  - the Timepix chip (analog and digital parts). work in progress
  - sensor and ASIC noise. work in progress
- For 100 μm sensor on 750 μm Timepix (without including noise in simulation) with V<sub>bias</sub>=35 V (over-depleted sensor) and 5.6 GeV electrons:

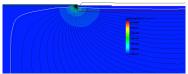


 More tuning is needed for the simulation of the DUT for a better match with data!

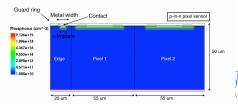
### Introduction to CLIC

2 Requirements for the CLIC vertex detector

- 3 R&D on sensor and readout
- 4 GEANT4 simulations and digitisation
- 5 Active-edge sensor optimisation studies



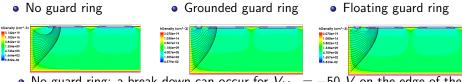




#### **ETH** zürich

### Active-edge sensor optimisation studies

- Active edge sensors can reduce significantly the material budget and the dead areas of the detector.
- To control the voltage at the edge, an implantation is done on the sidewall ⇒ the DRIE (deep reaction ion etching) process.
  - extends the backside electrode to the edge.
  - a voltage drop between the edge and the first pixel is created  $\Rightarrow$  early breakdown in silicon for electric fields higher than 3  $\times$  10<sup>5</sup> V/cm.




• Guard rings: establish a smooth voltage drop between the edge and the first pixel.



#### **ETH** zürich

# Guard ring solutions

• TCAD simulation tools are used to model semiconductor devices fabrication and device operation.



- No guard ring: a break down can occur for  $V_{bias} = -50 \ \overline{V}$  on the edge of the first pixel.
- Grounded guard ring: the E-field is significantly reduced on the first pixel but a part of the signal in the edge region is lost (it is collected by the guard ring).
- Floated guard ring: a breakdown risk still exists for very high bias voltages but the inactive region is highly minimised.
- Assemblies with active-edge sensor from Advacam are under process.

### Introduction to CLIC

2 Requirements for the CLIC vertex detector

3 R&D on sensor and readout

4 GEANT4 simulations and digitisation

5 Active-edge sensor optimisation studies





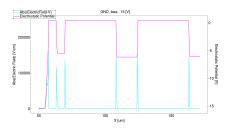
#### **ETH** zürich

- Challenging demands on the CLIC vertex detector
- $\bullet$  Validation of  $\operatorname{GEANT4}$  simulation models with test-beam results
- Sensor layout optimisation based on TCAD simulations

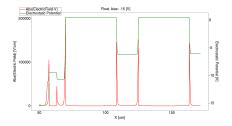




**ETH** zürich


# Backup slides




**ETH** zürich

## Guard ring solutions: Electric field and potential

 Grounded guard ring increases the depletion region but a part of the signal in the edge region is lost.



• Floated guard ring creates a compromise between the depletion region and the inactive region.





