

Trigger and Tracking for the LHCb Upgrade Joint ETH-PSI-UZH PhD seminar, Zürich

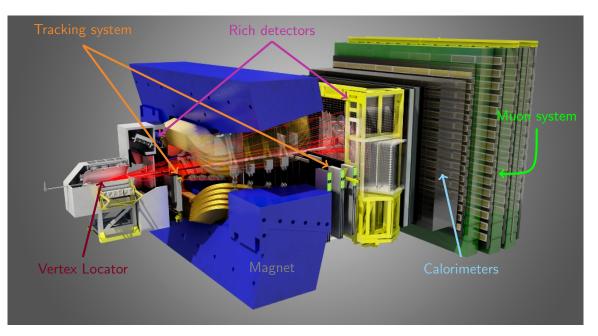
Espen Eie Bowen

Universität Zürich

11th September 2014

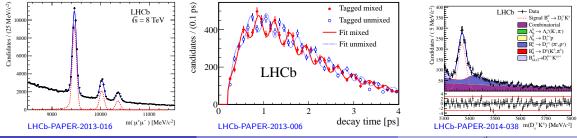
Table of Contents

1 Introduction to LHQ.

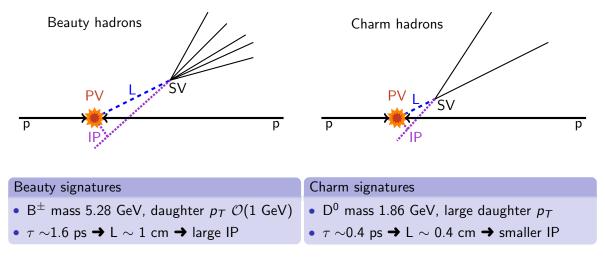

2 The LHCb Upgrade

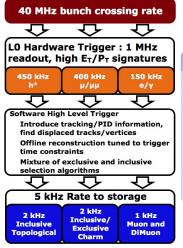
3 Tracking in the Trigger

5 Lifetime unbiased triggering


6 Summary

4 Performance


The LHCb experiment

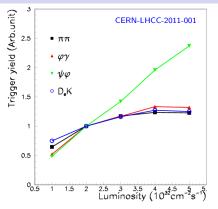

- LHCb is a dedicated heavy flavour physics experiment at the LHC
- Forward spectrometer exploiting the large production of $b\overline{b}$ pairs in the 2< η <5 region
- Its primary goal is to search for indirect evidence of New Physics in CP violation and rare decays of beauty and charm hadrons
- This requires:
 - **1** Excellent tracking (momentum resolution ($\Delta p/p = 0.4\%$ 0.6%), IP resolution (20 μ m))
 - 2 Excellent decay time resolution (45 fs)
 - **3** Excellent particle identification $(K/\pi/p \text{ separation})$
 - 4 Flexible, robust and efficient triggering (including on hadrons)

Espen Eie Bowen (Universität Zürich)

Trigger and Tracking for the LHCb Upgrade

LHCb trigger scheme: 2011-2012

Level 0 (L0) - Implemented in hardware


- High p_T and E_T signatures in muon and calorimeter systems
- 1 MHz detector readout

Higher Level Trigger (HLT) - Flexible software triggers

- Track reconstruction and PV finding performed
- Combination of inclusive and exclusive selections

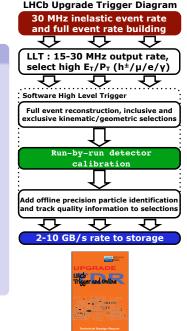
Motivation for Upgrade

- The experiment is performing well, operating in 2012 at $\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ (twice design luminosity) corresponding to $\sim 2 \text{ fb}^{-1}$ per year
- Going to higher luminosity is inhibited by 1 MHz detector readout
 - → Saturation of trigger yield for hadronic channels

Upgrade strategy

- Read out whole detector at 40 MHz
- Move to a full software trigger

LHCb Upgrade and the LHC

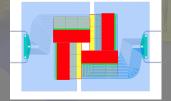

- Target luminosity is $\mathcal{L}=2\times 10^{33}~\text{cm}^{-2}\text{s}^{-1}$
- Key requirement is 25 ns bunch spacing
- Increase readout rate from 1 MHz to 40 MHz
- Sub-detectors must be replaced to be able to operate at a luminosities up to ${\cal L}=2\times 10^{33}~{\rm cm}^{-2}{\rm s}^{-1}$
- Upgraded experiment is expected to collect 50 fb^{-1} over 10 years

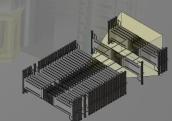
Physics motivations

- Measurable deviations from the Standard Model are still expected but should be small
- The aim is to go to very high precision measurements for the most clean observables
- Expected statistical sensitivities become comparable to theoretical uncertainties
- Enhanced trigger flexibility allows expansion of LHCb physics programme

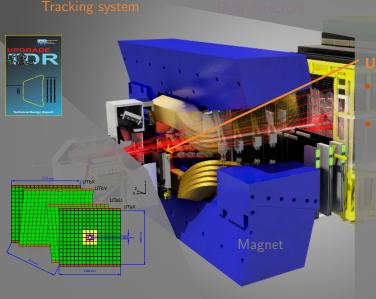
LHCb trigger scheme: Upgrade

- Main objective of Upgrade trigger is to remove 1 MHz bottleneck by implementing a trigger-less readout system
- Allows full inelastic collision rate of 30 MHz to be processed by a full software trigger
- Low Level Trigger with scalable readout rate (can act as "handbrake")
- Full event reconstruction followed by inclusive and exclusive selections
 - Offline like PID information available
- The estimated per-event timing budget is **13 ms**, which is very tight
 - ➔ Tracking algorithms must run as fast as possible!

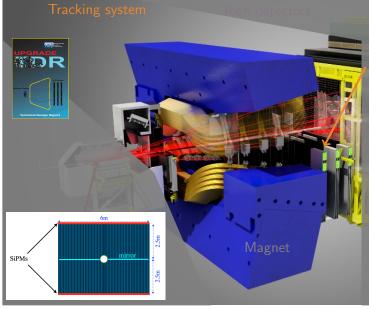




Rich detector


Vertex Locator (VELO)

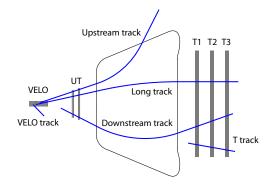
- Silicon micro-strip → pixel sensors
- 41 million 55 x 55 μm pixel sensors with micro channel CO2 cooling
- First pixel only 5.1 mm from beam (was 8.2 mm)


Vertex Locator

* Upstream Tracker (UT)

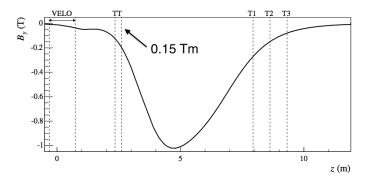
Four high granularity silicon micro-strip planes (X,U,V,X) Improved coverage of LHCb acceptance w.r.t current TT sub-detector

- Circular hole of radius 33.4 mm at centre
 Will play a larger role in
- track reconstruction in the trigger



Scintillating fibre tracker (SciFi)

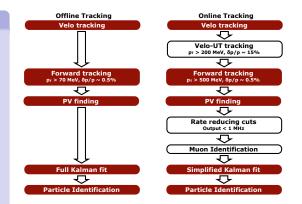
- Silicon micro-strips + straw tubes → scintillating fibers
- Three stations (X-U-V-X)
- 2.5 m long multilayer ribbons of 250 μm diameter scintillating fibre with silicon photomultiplier readout
- Single fast detector covering 350 m²

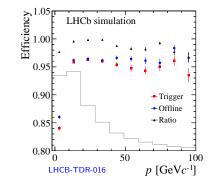

Track reconstruction

- The standard track reconstruction sequence for long tracks (Forward tracking) uses VELO tracks and adds hits from the SciFi sub-detector
- As there is no \vec{B} field in the VELO, the momentum of the VELO track is unknown
- Large, symmetric search windows are required to find matching SciFi hits
- Due to large combinatorics, this approach is too slow meet trigger demands

Upstream tracking

- Upstream tracking takes VELO tracks and adds UT hits to form upstream tracks
- The fringe field from the LHCb magnet between the VELO and UT sub-detectors (~ 0.15 Tm) makes a momentum estimate possible ($\delta p/p \sim 15\%$)
- Previously only used to find low momentum tracks that were bent out of acceptance by the magnetic field
 - Not used in the trigger




Idea

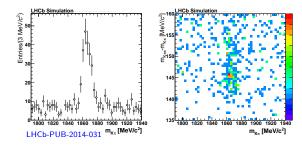
- Use upstream tracks as seeds to form long tracks
- Benefit from added momentum information
- Rewrite algorithm optimising for maximal efficiency for high p_T tracks while keeping execution time minimal

Result

- Using upstream tracks instead of VELO tracks
 - → Charge and momentum of track segment
 - → Can preselect on p_T
 - → Smarter, smaller search windows
 - Greatly reduced execution time and ghost rate!
- Upstream tracking has become part of the baseline tracking sequence for the LHCb Upgrade trigger

Track reconstruction efficiency

- Relative efficiency of the track reconstruction in the Upgrade trigger w.r.t to offline tracking sequence is 98.7% for tracks with $p_T > 500 \text{ MeV/c}$
- Large reduction in the ghost rate


Execution time

- Estimated per-event timing budget: 13 ms
- Execution time reduce by factor 3
- Can reconstruct tracks with p_T > 500 MeV/c consuming only <u>40% of available CPU resources</u>
- Time available to perform full RICH PID

Algorithm	CPU time [ms]
VELO tracking	2.0
VeloUT tracking	1.3
Forward tracking	1.9
PV finding	0.38
Total	5.6

Lifetime unbiased hadronic triggering

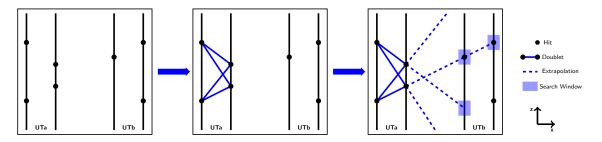
- An all-software trigger offers almost unlimited flexibility in designing trigger selections
- Able to select on particle lifetime, not proxy variables
 - ➔ No bias on the shape of the decay time distribution
 - ➔ Reduced systematic uncertainties
- First time for hadronic final states at a hadron collider!

Events selected by the lifetime-unbiased $D^0 \rightarrow K\pi$ Cabibbo-favoured trigger selection corresponding to 30 ms of data-taking in the upgrade.

Summary

• LHCb will upgrade its tracking system in 2018-2019 in order to:

- Cope with the new running conditions
- Fullfil ambitious new physics plans
- Changes in technology are necessary in many of the sub-detectors
- The Upgrade tracking system will allow LHCb to be the first hadron collider experiment to
 operate a software-only trigger at the full event rate!
 - → Ability to do physics with the output of the trigger
 - → Allows lifetime unbiased hadronic triggers
- The use of upstream tracks in the track reconstruction makes it possible to reconstruct all tracks with $p_T > 500 \text{ MeV/c}$ using only 40% of the available CPU resources
 - Time available to perform full RICH PID


Espen Eie Bowen (Universität Zürich)

Trigger and Tracking for the LHCb Upgrade

Backup

VeloUT tracking algorithm

- Linearly extrapolate VELO track to UT
- Select hits within a search window around the extrapolated track
- Form doublets of hits in the first two layers
- Extrapolate doublets to third/fourth layers and search for compatible hits
- If no four hit candidates found, repeat in starting from last two layers
- Fit each track candidate with a χ^2 fit and estimate q/p
- Choose best candidate track based on # layers fired and χ^2

