

same-sign dileptons at CMS

marc dünser

PhD Seminar - UZH

11/09/14

why same-sign dileptons?

same-sign di-leptons are a very interesting signature for many analyses

- -> searches for SUSY
- -> also many interesting SM analyses done

e.g. SUSY

-> leptons can originate from direct decays of SUSY particles or from top/W/Z in the decay chain

2

- -> interesting for 'natural' SUSY, where one expects light stop quarks
 - --> an example: gluino -> top + stop -> top + neutralino
- -> other examples: direct sbottom production, EWK SUSY production

why same-sign dileptons?

very different phase spaces for the various SUSY analyses

- -> very high to very low hadronic activity
- -> different spectra in missing momentum and p_{T}

the analysis - overview

select 2 same-sign leptons (e/µ) > 20/10 GeV

- -> jets above 40 GeV
- -> ME_T above 30 GeV

Detector related

charge mis-identification

- -> electrons are affected
- -> small (~5%) of total from data

'fake' leptons

- -> leptons not from W/Z/SUSY
 -> largest background in many regions of phase space
 -> the estimation and study of this background is an active field of research
- -> fully data driven method!

Physics related

rare SM processes which produce same-sign leptons

- -> can be background or signal
- -> cross-sections usually in the O(100 fb) regime
- -> examples: W+Z, tt+W, tt+H production
- -> look very "SUSY-like"
- -> taken from MC

the problem of the fakes

fakes: leptons not originating from W/Z/SUSY

- -> mostly real leptons from b-jets
- -> also a small fraction of mis-identified jets

we employ a fully data-driven method

- -> measure a fake-ratio *f* in a data control region
- -> apply this ratio *f* to a sideband of the signal regions

the problem: systematic uncertainties

- -> it's hard to fully understand the systematic uncertainties
 - -> e.g. background composition (W-jets vs. ttbar)
 - -> is this fake-ratio *f* really universal? are we measuring it in the right control region?

so far: 50% uncertainty applied on this background

-> it is a current interest of CMS to try to reduce this number

results - 'classic' SUSY

showing results of a paper on 19.5 fb⁻¹ of 8 TeV pp: <u>arXiv:1311.6736</u> [JHEP 01 (2014) 163]

-> a 'classical' SUSY analysis targeted at (mostly) gluino/squark production

- -> 24 exclusive signal regions in kinematic variables
 - $(H_T/ME_T/N_{jets}/N_{b-jets})$
- -> kinematic distributions look nice

results - 'classic' SUSY

results in the 24 exclusive signal regions are in good agreement with predictions

- -> no significant excess
- -> can be seen how background composition varies with the number of b-tag jets

so we didn't find anything?

unfortunately we did not observe any significant excess in data for the SUSY searches
-> so we proceeded to set limits on many different SUSY models
-> managed to publish a number of papers on different SUSY models

to set limits on signal models, it is imperative to understand a potential signal

-> what is the acceptance? which phase spaces of signal can we probe?

higher mass -> lower cross section

lower mass splitting between SUSY particles -> lower acceptance

-> systematic uncertainties on the signal have to be understood

-> uncertainties from many different sources (JES, JER, PDF, etc.)

not finding an excess also tells us something about physics!

gluino - gluino production

interesting to see how limits are stable w/r/t different SUSY models

marc dünser

9

gluino - gluino production

interesting to see how limits are stable w/r/t different SUSY models

marc dünser

10

 10^{3}

95% CL upper limit on cross section (fb)

10²

10

sbottom - sbottom production

interesting to see how limits are stable w/r/t different SUSY models

what about EWK SUSY?

4 signal regions in very different phase space (high MET, no hadronic activity) -> results published recently on arXiv:1405.7570

11/09/14

what about the SM?

interesting signatures for same-sign dileptons also in the SM
-> measured this already at 7 TeV, repeated it at 8 TeV

go into optimized (by expected signif.) signal region

-> N_{jets} >2 , N_{b-jets} > 0, lepton p_T > 40 GeV, H_T > 155 GeV -> split by flavor and charge (signal is asymmetric)

marc dünser

is there more for same-sign?

yes, absolutely!

- -> has been used in EXO searches
- -> has been used in tt+H

same-sign leptons will play a crucial role in the early searches at 13 TeV

-> first and foremost (I think) in SUSY

let's see what the future brings

-> if there's no SUSY, there are other ideas floating around, e.g. double parton scattering (but this is hard)

the end

SR definition

N _{b-jets}	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} \in [200, 400]$ (GeV)	$H_{\rm T} > 400 ({\rm GeV})$
= 0	50-120	2–3	SR01	SR02
		≥ 4	SR03	SR04
	>120	2–3	SR05	SR06
		≥ 4	SR07	SR08
= 1	50-120	2–3	SR11	SR12
		≥ 4	SR13	SR14
	>120	2–3	SR15	SR16
		≥ 4	SR17	SR18
≥ 2	50-120	2–3	SR21	SR22
		≥ 4	SR23	SR24
	>120	2–3	SR25	SR26
		≥ 4	SR27	SR28