

Search for associated tīH production in the H → bb decay channel at CMS using the Matrix Element Method

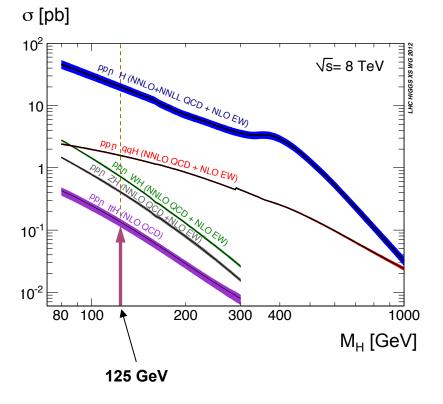
Daniel Salerno

Reference

2014 PhD seminar

CMS PAS: HIG-14-010

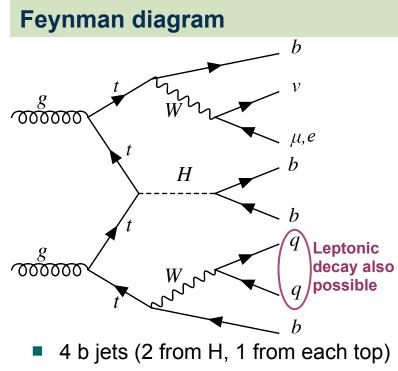
11 September 2014, Universität Zürich


1

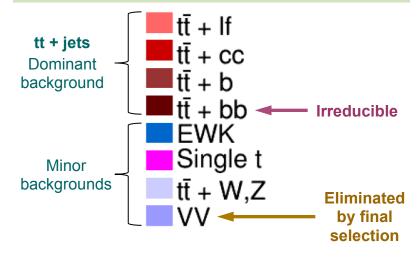
Standard model ttH production

Motivation

- Higgs boson with 125 GeV mass discovered by CMS and ATLAS
 - Focus now on studying its properties
- ttH provides a direct probe of the Higgs/top Yukawa coupling y_t
 - Most important fermion coupling
 - Only one with $y_t \sim 1$
 - Provides insight to possible new physics
- This search is at CMS
 - Multipurpose detector at the LHC


Production cross section at LHC

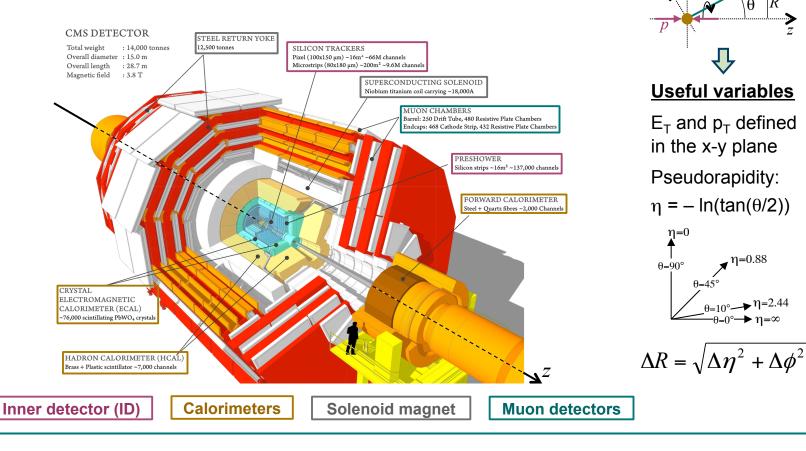
ttH (H→bb) channel



- 2 (0) light flavour jets (from W)
- 1 (2) leptons $-\mu$ or e (from W)
- Missing energy (from v)

Characteristics

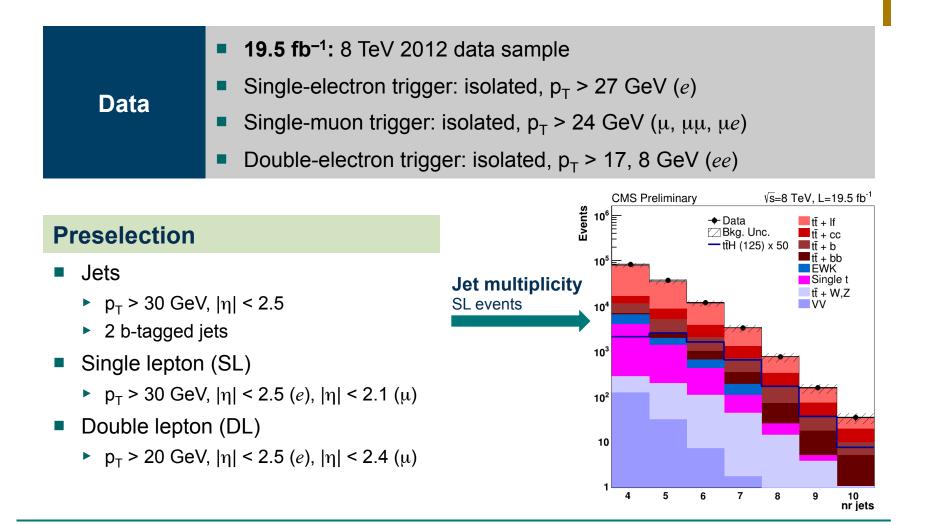
- H→bb has largest BR (≈58%)
 - Fully reconstructed final state
- Leptonic final state
 - Greatly reduced background


Background processes

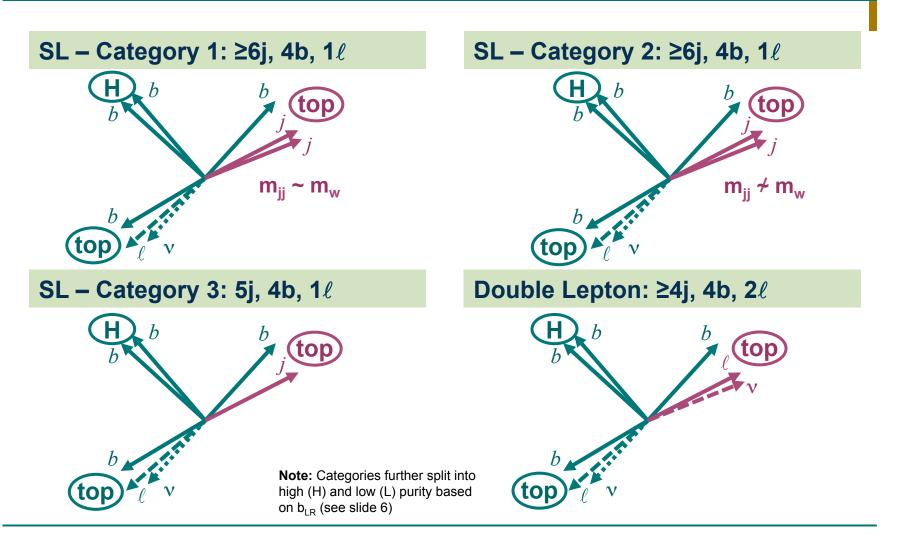
The CMS detector

- Located at the LHC a proton-proton collider
 - Centre-of-mass energy of 8 TeV in 2012

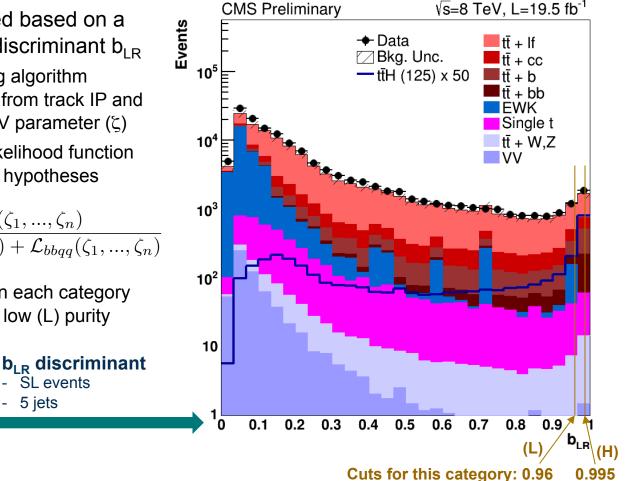
Coordinate system


x

l,q


Data and preselection

4 event categories

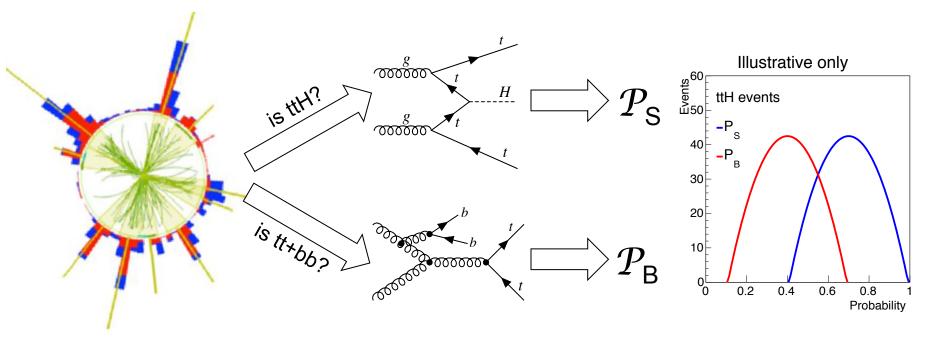

b-tag likelihood ratio

- Events further selected based on a b-tag likelihood ratio discriminant b_{IR}
 - For each jet, b-tagging algorithm combines information from track IP and secondary vertex: CSV parameter (ζ)
 - $\zeta_1, \dots, \zeta_{\text{niets}}$ used in a likelihood function for 4 b- and 2 b-quark hypotheses

$$\blacktriangleright b_{\rm LR} = \frac{\mathcal{L}_{bbbb}(\zeta_1, ..., \zeta_n)}{\mathcal{L}_{bbbb}(\zeta_1, ..., \zeta_n) + \mathcal{L}_{bbqq}(\zeta_1, ..., \zeta_n)}$$

A cut on b_{IR} is made in each category to define high (H) and low (L) purity subcategories

> - SL events 5 jets



The Matrix Element Method

- Provides optimal separation of signal and background
- **Overview** Reduces combinatorial self-background
 - Calculates the probability of an event being signal/background

The MEM event probabilities

The Variables

The

Formula

The

Prob-

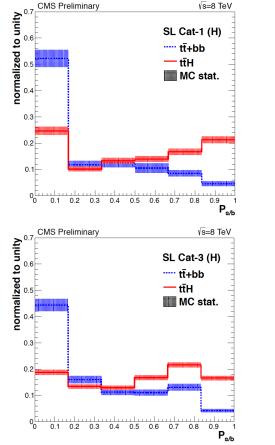
abilities

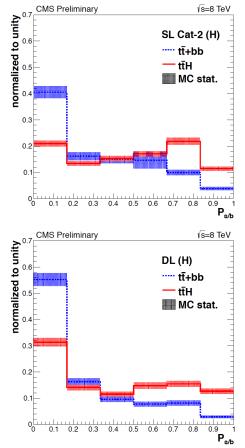
- Measured kinematical variables (y) used as input
- Lepton energy and direction is assumed to be perfectly measured
- Jet direction is assumed to be perfectly measured
- Integration over poorly measured variables (E_{jet}, p_v)
- Sum over all possible permutations of jet-quark matching

$$w_i(\mathbf{y}) = \frac{1}{\sigma_i} \sum_{\text{perm}} \int_{\Omega} d\mathbf{x} \int dx_a dx_b \Phi(x_a, x_b) \delta^4 \{ (x_a P_a + x_b P_b) - \sum p(\mathbf{x}) \} |\mathcal{M}_i(\mathbf{x})|^2 W(\mathbf{y}|\mathbf{x})$$

- Ω = phase space volume of final particles **x**, $x_{a,b}$ = parton momentum fraction
- Φ = parton flux factor, \mathcal{M}_i = scattering amplitude of process i (i = ttH, tt+bb)
- W = transfer function: probability of measuring y given x
- 3 different probabilities are determined
 - $\mathcal{P}_{S}(\mathbf{y}) = w_{S}(\mathbf{y})\mathcal{L}_{bbbb}(\boldsymbol{\xi})$
 - $\mathcal{P}_{B1}(\mathbf{y}) = w_{B}(\mathbf{y})\mathcal{L}_{bbbb}(\boldsymbol{\xi})$
 - $\mathcal{P}_{B2}(\mathbf{y}) = w_{B}(\mathbf{y})\mathcal{L}_{bbqq}(\boldsymbol{\zeta})$
 - Where $\mathcal{L}_{bbqq}(\vec{\zeta}) = \sum_{i} P(\zeta_1, ..., \zeta_6 | \{bbqqqq\}_i)$ is the b-tag likelihood

8

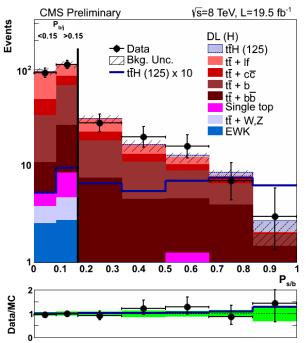

The final discriminant


Calculation

- For each event \mathcal{P}_{S} and \mathcal{P}_{B1} and \mathcal{P}_{B2} are calculated
- Final discriminant is built

$$P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \mathcal{P}_{B1} + \mathcal{P}_{B2}}$$

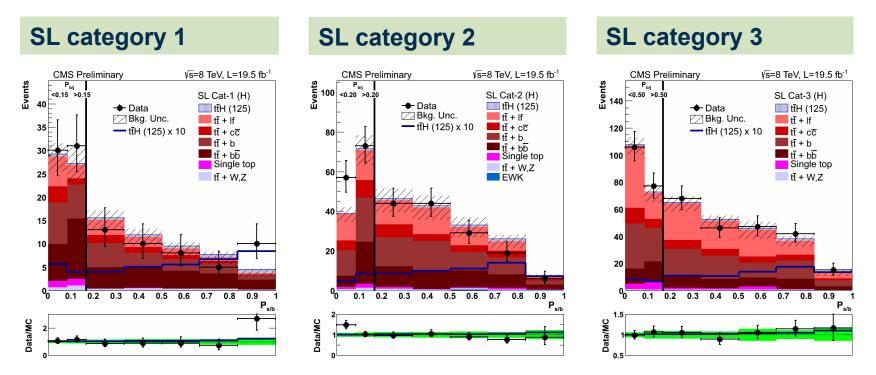
Expected distribution



The final picture

Systematic uncertainties

- Signal and background predictions affected by experimental and theoretical uncertainties
- Dominant systematics are
 - Jet energy resolution
 - CSV uncertainty
 - tt+bb uncertainty
- Systematic uncertainties constrained by fitting the MC to the observed distributions
- Ultimately the uncertainty is dominated by the limited data


Post-fit distribution of P_{s/b} (DL)

- Events in the first bin are split into 2 bins based on P_{b/j}:
 - Separates tt+bb and tt+lf

Post-fit discriminant distribution

First presented in July!

Signal expected to peak towards the right

2 rightmost bins provide the best signal/background discrimination

Exclusion limits

First presented in July!

Statistical interpretation

- Insufficient data for discovery
 - Analysis limited by statistics
- An upper limit can be placed on the ttH cross section
 - Signal strength modifier: $\mu = \sigma_{\text{ttH}}/\sigma_{\text{SM}}$
- Best fit value of μ after combining all categories is $\mu = 0.7 \pm 1.4$
 - Large uncertainty due to limited statistics

95% CL Upper limits on $\mu = \sigma/\sigma_{SM}$ **CMS** Preliminary √s=8 TeV, L=19.5 fb⁻¹ 95% CL upper limit on $\mu = \sigma/\sigma_{sm}$ 10

🔶 Exp. 68% <mark>- Exp. 95%</mark>

Observed

- Median exp. (signal injected)

Expected (observed) limit is μ < 2.9 (3.3)

SL Cat-1 SL Cat-2 SL Cat-3

3,3

All comb.

DL

Conclusion

Summary	 Defined a signal/background discriminant based on the MEM Set an upper limit on the ttH cross section (μ = σ_{ttH}/σ_{SM}) Expected upper limit is μ < 2.9, observed limit is μ < 3.3
Comparison	 This analysis represents ~30% improvement over the previous CMS MVA analysis (HIG-13-019) Expected upper limit of μ < 4.1, observed limit of μ < 5.2 Improvement mostly due to better discrimination against tt+bb
Next steps	 Expansion of current analysis Include all hadronic and boosted final states, and H → ττ Looking forward to run at 13 TeV

More data will provided a stronger result

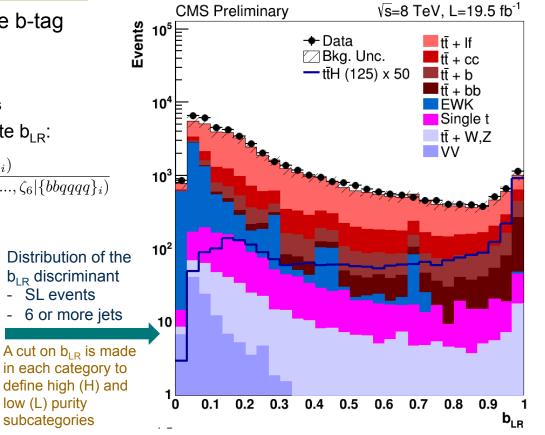
Backup

Samples used in analysis

	19.5 fb ⁻¹ : 8 TeV 2012 data sample		
	7 TeV 2011 sample not considered in this analysis		
Data ■ Single-electron trigger: isolated, p _T > 27 GeV (<i>e</i>)			
	Single-muon trigger: isolated, $p_T > 24$ GeV (μ , μ_I	μ, μ <i>e</i>)	
	Double-electron trigger: isolated, p _T > 17, 8 GeV	' (ee)	
	• Signal: $gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ with M _H = 125 GeV	(PYTHIA)	
	• tt+iets : $qq \rightarrow t\bar{t}q\bar{q}$, $q = b, c, s, u, d$	(MadGraph)	

Monte Carlo

tt+jets: $gg \rightarrow t\bar{t}q\bar{q}$, $q = b, c, s, u, d$	(MadGraph)
ttV: $t\bar{t} + W, Z$	(MadGraph)
Single top: $t, tW, \bar{t}, \bar{t}W$	(POWHEG)
EWK: $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$ and $W \rightarrow \ell \nu$	(MadGraph)
VV: <i>WW</i> , <i>WZ</i> , <i>ZZ</i>	(PYTHIA)


b-tag likelihood ratio

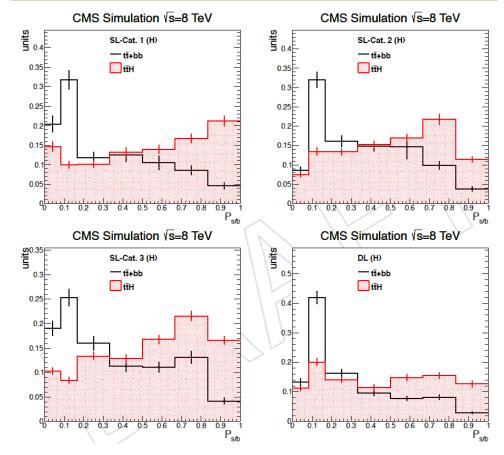
b-tag likelihood ratio

- Events selected based on the b-tag likelihood ratio discriminant
 - Jets sorted by CSV value (ζ)
 - A variable used to identify b jets
 - Top 4 to 6 jets used to calculate b_{LR}:

 $b_{LR} = \frac{\sum_{i} P(\zeta_1, ..., \zeta_6 | \{bbbbqq\}_i)}{\sum_{i} P(\zeta_1, ..., \zeta_6 | \{bbbbqq\}_i) + \sum_{i} P(\zeta_1, ..., \zeta_6 | \{bbqqqq\}_i)}$

Note: Sum is over all possible permutations of jet–quark matching

The final discriminant

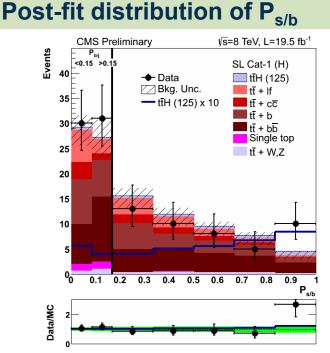

Calculation

- 3 different probabilities are determined
 - ► $\mathcal{P}_{S}(\mathbf{y}) = w_{S}(\mathbf{y}) \mathcal{L}_{bbbb}(\boldsymbol{\xi})$
 - $\mathcal{P}_{B1}(\mathbf{y}) = w_{B}(\mathbf{y})\mathcal{L}_{bbbb}(\boldsymbol{\xi})$
 - $\mathcal{P}_{B2}(\mathbf{y}) = w_{B}(\mathbf{y})\mathcal{L}_{bbqq}(\boldsymbol{\xi})$
 - Where $\mathcal{L}_{bbqq} = \sum_{i} P(\zeta_1, ..., \zeta_6 | \{bbqqqq\}_i)$ is the b-tag likelihood
- Final discriminant is built

$$P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \lambda_{b/j}\mathcal{P}_{B1} + (1 - \lambda_{b/j})\mathcal{P}_{B2}}$$

 λ_{b/j} sets the relative ratio between tt+bb and tt+jj backgrounds

Expected distribution


Systematics and the fit

Systematic uncertainties

 Signal and background predictions affected by experimental and theoretical uncertainties

Luminosity	2.6%
Pile-up	omitted
Trigger and ID efficiency	2.0%
Jet energy scale and resolution	shape
b-tagging	shape
tt+jets modelling	shape
tt+ heavy flavour	50%
Parton density function	3-9%
QCD scale	1-20%
Limited MC statistics	bin-by-bin

- MC simulations are fitted to data allowing the systematics to float
 - Background shape and normalisations change depending on data
 - Constrains systematics, improves the power of the analysis

- Events in the first bin are split into 2 bins based on: $P_{b/j} = \frac{\mathcal{P}_{B1}}{\mathcal{P}_{B1} + \mathcal{P}_{B2}}$
 - Value chosen to get ~50% tt+lf in each