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ttH(bb) analysis: status and importance of precise theory

simulations for signal and background

Status
o ttH(bb) not observed

o tt + jets simulation still

based on LO MC tools 95% exclusion in o units | H bbb H—= W*  H— 7y
ATLAS 41 (26) 6.7 (4.9)
o related theory cMS 33(29) 66(24) 7.4(57)

uncertainty is one of the
main bottlenecks

@ experimental challenge: highly
involved bbbblvjj signature

o theoretical challenge: NLO
corrections to multi-particle
backgrounds
pp — tijj, ttcc, tthb
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Theoretical predictions for ttbb and ttjj: status and needed

improvements

@ available: fixed-order NLO for ttbb and tt+jj (at 14 TeV)

o [fb) pp — b + X
6000
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1 = my FTEPTE &2 -1 1
1000 uh = ,,,‘\jm:: ttbb
3000 :, myj, > 100 GeV SCale uncerta|nty 80% _ 20%
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[A. Bredenstein,A. Denner,S. Dittmaier and S.P.,JHEP 03(2010)021]
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ttjj
scale uncertainty 70% — 15%

[G. Bevilacqua,M. Czakon,C.G. Papadopoulos,and M.

o (s8]

Worek,Phys.Rev.Lett. 104(2010)162002]

@ parton-level results not applicable to experimental analysis
— NLO+PS matching crucial in order to exploit strong reduction of
uncertainty
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Theoretical predictions for ttbb and ttjj: status and needed

improvements

Final goals
@ NLO+PS simulations with different (N, Ny, N.) multiplicity

@ consistent merging in a single simulation

I NLO corrections to multi-particle FS processes needed
o gg — ttbb 0(10%) 1-loop diagrams
e gg — ttgg O(10*) 1-loop diagrams

* inconceivable until few years ago, now feasible thanks to new
automatic NLO tools

*

but NLO matching and merging still significantly challenging
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Simulation Tools: Sherpa + OpenlLoops
o SHTNNEHIS IO R e

Open LOOpS [Cascioli, Maierhsfer, S.P., PRL 108(2012)111601 ]
o fully automated loop-amplitude generator for NLO QCD

@ conceived to break multi-particle bottlenecks (fast, numerically
stable, flexible)

@ now publicly available at http://openloops.hepforge.org
Sherpa2.1 [Hoeche, Hoeth, Krauss, Schoenherr, Schumann, Siegert, Zapp]

@ Monte Carlo event generator

o fully automated interface to OpenLoops for NLO MEs

o automated matching (S-MC@NLO) and merging of jet multiplicities
(MEPS@NLO)
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http://openloops.hepforge.org

New simulation of ttbb prod

(i) 4F scheme: why?

5F scheme (m, = 0):
@ ttbb MEs cannot describe collinear g — bb splittings

= inclusive tt+b-jets requires ttg+PS i.e., tt+ < 2 jets NLO merging
required

4F scheme (m;, > 0):
@ no b-quarks in the PDFS (only FS b-quarks from g — bb splittings)
@ full tthb phase space with NLO ME predictions

@ IR singularities from (soft and) collinear g — bb configurations converted
into finite In(my) terms

@ can describe ttbb and also ttb final states with unresolved b-quark
(important for ttH analysis)

b
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New simulation of ttbb production

(if) NLO matched to PS

MC@NLO matching to Sherpa PS [S-MC@NLO)]

@ shower renders NLO calculations applicable to experimental analyses

@ multi-parton emissions during evolution from hard scale to ~ 1GeV
= resummation of large logarithms in exclusive observables

o tt + N b-jets, with N =3,4,... via g — bb PS splittings

* hadronisation + UE
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Sherpa S-MC@NLO matching

[Héche, Krauss, Schénherr, Siegert '11]

Sherpa parton shower kernel based on CS dipoles Djj
(# Pythia/Herwig)

Dij(®r)

Bion) AlErE)O®R),

"
Ults, %) = Bt 1)0(®) + 3 [ d®ra

ijk 't

S-MC@NLO matching: NO double counting of first QCD emission (R, Dj)

0) = /dd)B {B(ch) + V(®g) + Z/d¢R|BDijk(¢R)9(IL% —t)| U(to, )
+ [ aos [R(%) 3 Du(®r)o - r)} O(®r).
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Setup of S-MC@NLO tthb simulation @ 8TeV in 4F

scheme

[Cascioli , Maierhdfer, N.M. ,Pozzorini, Siegert, Phys. Lett. B734 (2014) 210]

Categorisation according to number of b-jets
@ anti-kt jets with R = 0.4

@ "physical” b-jet definition: any jet containing one or more b-quarks
is considered b-jet (possible only with mp, > 0 matrix elements!)

@ classification of events according to the number N, of QCD b-jets
with
pr > 25GeV, |n| < 2.5
Results for the following subsamples
o tth (Np > 1)
o ttbb (Np > 2)
o ttbbygy (N, > 2) in the tEH(bb) signal region my, > 100GeV
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Simulation results
NLO vs S-MC@NLO cross sections

tth ttbb ttbb(myy, > 100)
+71% +14% +66% +15% +63% +17%
ovLolfb] 26447550, “119, 463.3 7360, 100, 123.47350, “139,
+34% +5.6% +29% +5.4% +26% +6.5%
onLol[fb] 3296 550, 4.9 5607540, 4% 141.875% _4.6%
ONLO/OLO 1.25 1.21 1.15
+32% +3.9% +24% +2.0% +20% +8.1%
fch[fb] 33137250/: 72.9"/‘; 6007220/00 72.1% l81'0720°/: —6.0“/:
O'M(j/O'NL() 101 107 128

@ good perturbative convergence: uncertainty goes from 70% (LO) to
20 — 30% (NLO)

@ K-factors small and rather independent of selection (ttb sample free
from large In(my) in 4F scheme)

@ surprisingly large S-MCONLO effect (~30%) in Higgs-signal region
of ttbb
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tth analysis (N, > 1)

b-jet and top-quark distributions

My PT.by PT,t;

prof 19 bret (tth cuts) prof 1 op (1o cuts)

Reliable perturbative prediction
@ shape of 1% b-jet very stable wrt NLO corrections

o excellent S-MCONLO vs NLO agreement (first principle theoretical
prediction, small shower dependence)
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ttbb analysis (N, > 2)

b-jet and top-quark distributions

by PT by PT,t

11 of 1% brjet (tbb cuts) pr of 19 bret (ttbb cuts) pr of 1 top (ttbb cuts)

4 3 2 a o 1 2 3 it 50 50 250 5 5 150 200 250 300 350 400
" prGev]

Good stability
@ moderate S-MCONLO excess wrt to NLO
@ small distortions in bottom and top pr
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ttbb analysis (N, > 2)

b-jet correlations

Mp1p2

Mass of frst tw brjets (ttbb cuts)

do/daR [fb]
do/dmy, [fo/GeV)

[ T T N 0s
B 5 35 4 .
AR

Completely different behaviour
@ NLO corrections remain quite flat
o significant S-MCQ@NLO enhancement at large ARy, 1, and large
Mp, b,
@ reaches 30% at mpips ~ 125GeV

o completely disappears if PS g — bb splittings switched off!
(MC@NLOg,, curve)
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ttbb analysis (N, > 2) with my,,, > 100GeV

b-jet correlations

ARy b,

AR of 15 and 2 bjets (tbb cuts and 1y, > 100 GeV)

do/dAR [fb]

do/dpr [fo/GeV]

=== MCaNLO

S-MCGONLO excess at large my;, from back to ba’éblg(” soft jets
o factor-2 enhancement at AR ~ 7
o factor-2 enhancement at small pr

Consistent with soft-collinear behaviour of gluon-jet emissions
b

Contribution from double collinear g — bb

splittings (NOT present in ttbb simulations

in 5F scheme)

b— jet
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Theoretical (scale) uncertainties
Scale choice(s)

Scale choice and variations are essential

o multi-scale problem m} < Q2 < m? (5 to 500GeV)

ij ~
e factor 2 variation — O(80%) oz, variation
Natural scale choice

Idea: factorization of hard pp — tt (scale ~ m; ~ E7 ;) plus b-jet
emission (~ Et p)

= [LCMMPS = 4 H Et,;
i=t,t,b,b

305D

— small K-factors, no large logs
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Theoretical (scale) uncertainties
Data uncertainties

usually NLO uncertainties estimated with factor 2 scale variations
(1= & x pemmps, with 3 < €< 2)

= Is it enough?

2 kinds of uncertainties:
o Normalisation uncertainties
— can be reduced with data driven approach
e Shape uncertainties

— less constrained by experimental data
— usual factor 2 scale variations are less appropriate for them

= deep study of shape distortions is needed
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Theoretical (scale) uncertainties

Cross sections uncertainties

Consider kinematic distortions of ug, jip, (L@ using various combinations
of the variables

HCMMPS; myg,
Hroey = Erpe) +Erpgy Hr=Hre+Hrp

‘ Scale H default ‘ glo-HT | glo-Mt ‘ glo-soft H R-Mbb ‘ R-HTb ‘ R-HTt H Q-CMMPS ‘ Q-Mt ‘
MR poenvvps | Hr/2 my, JLCMMPS (mrmbg)l 2 (metir /)2 | (metir,er2)? ACMMPS | HOMMPS
HF Hr./2 | Hr/2 my | pevmps Hr /2 Hr /2 Hr /2 Hr /2 Hr./2
2] Hre/2 | Hr/2 mg | HoMMPs Hr/2 Hr./2 Hr,/2 HCMMPS my
Cuts ‘ Ac/o ‘ Ac/o ‘ Ac/o Ac/o Ao /o Ac/o Ac/o Ao/o Ac/o ‘
tth 0% —41% | —27% +4.7% +2.3% 1.1% -32% —3.5% -0.3%
ttbb 0% -33% | —17% —0.7% +0.2% 3.4% —22% —6.4% —1.1%
ttbbigo 0% —-29% | —13% —9.2% —5.6% +2.5% —17% —14% —2.9%

glo single global scale: hard, fixed and softer
R renormalisation scale (dominant!): modify or avoid b-jet dependence

Q  resummation-scale (PS uncertainties): softer and fixed

= variation of relative tth,ttbb,tthbigg rates
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Theoretical (scale) uncertainties
Shape uncertainty of top-p

PT,t;
(ttbb)

PT,t,
(ttbb)

PT,t1t,
(ttbb)

= ~10% shape variations (20% in the tails) driven by top-dependence
of ur
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Scale variations
Shape uncertainty of b-jet pp

PT,b;
(ttb)

PT,by
(ttbb)

PT,b,
(ttbb)

_.f a'_':'_'_'—

e

= ~10-20% variations (40% in the tails) driven by b-dependence of ug
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Theoretical (scale) uncertainties
Shape uncertainty of b-jet correlations

mb1b2

(ttbb)

ARy b,
(ttbb)

ARy b,
(ttbbmo) fospspsspaspsrspont

= ~10-20% variations driven by b-dependence of ugr (at small my;,
and AR) and (aggressive) reduction of pq in the tail
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Scale variations
MC Samples

All predictions available for experimental analyses as a series of MC
samples

@ central scales

@ normalisation + shape variations (scales, PDFs, Shower, my,. .. )
@ top decays

o fully showered

@ hadronisation + UE

N.Moretti NLO simulation of tEH(bb) backgrounds



S-MCONLO ttbb simulation in the 4F scheme

* MEs with my, > 0 cover full b-quark phase space — complete
tt-+b-jets simulation independent of tt-+light-jets

* new b-jets production mechanism: double g — bb splittings
surprisingly important for ttH(bb) analysis
* S-MC@NLO: 20-30% normalisation and ~10% shape uncertainties

@ deep study of shape uncertainties

= 8TeV "all inclusive” samples available (UE , Hadronisation, Decays
etc.) ready for experimental analysis

e fundamental step towards complete tt4multi-jets NLO analysis

[Héche, Krauss, Maierhdfer,Pozzorini, Schonherr, Siegert ‘14]
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BACKUP slides
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Warm-up: validation of tools

Validation of tools

@ reproduced NLO ttbb tt+0,1,2 jets in the literature
@ new 8TeV LO and NLO ttbb oo results for 3rd HXSWG report

setup | o O'Lo[fb] 5’Lo[fb] O'NLo[fb] K K

S1 Mt 503(1)7%%%  342(2)T0%  671(3)73%:  1.34 1.96
S1 peoop  861(2)T5%e  557(3)T%%  901(3)T%E  1.04 1.62
S2 Mt 37.21(7) 5% 25.41(8) Lok 45.5(1)72F 123 1.79
s2 peoop  54.8(1)T0ar  36.2(2)75%%  54.3(2)7%:  0.99 1.50

@ using “wise” scale essential for convergence of perturbation theory
@ NLO can reduce uncertainties up to ~ 25% at 8 TeV
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Additional m;, and PDF variations with potential

impact on shape (and normalisation)

’ H My =5.0 ‘ My, =45 H CTEQ 4F ‘ MSTWs;, ‘ MSTWs3g ‘

’ Cuts H Ao /o ‘ Ao /o H Ao /o ‘ Ao /o ‘ Ao/o ‘
tth —3.5% +4.4% —10% —0.1% +2.6%
ttbb —0.7% +2.7% —-9.3% +0.2% | +4.2%

ttbbigo —0.1% +4.4% —7.8% —0.7% +6.9%

@ conservative b-mass variations my, = 4.75 £ 0.25GeV (impact on
collinear regions)

@ compare central MSTW to central CT10 PDF and MSTW variations
with large gluon-shape distortion (MSTW eigenvector 19)
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Choice of ur, pr and pg

Scale choice in o (p?) is crucial
o widely separated scales m, < Qjj < myg,f can generate huge logs

Dyl’lamical “BDDP” Scale [Bredenstein, Denner, Dittmaier, S. P. '10] guara ntees gOOd
convergence by adapting to b-jet pr

aé(ﬂéDDP) = aé(mr\/PT,bIPT,w) =~ a%(mf)as(pgf,bl)as(f’%,tﬁ)

Natural generalisation (for pr — 0 region)

Factorisation and Resummation scales (available phase space for
QCD emission)

1
UF = @ = E(ET,t + Er)
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Validation Plot 1:
ttbb analysis (N, > 2)

ttbb analysis (N, > 2): 1 light-jet pr distribution
S-MCG@NLO vs NLO

pr of 1% non-b jet (ttbb cuts)
:

P NN @ in good (5%) agreement in the tail
% ) 3 @ Sudakov damping of NLO IR
3 b 3 singularity at pr — 0
! E @ ~25% deviation at intermediate
" 5 pr consistent with expected
E SrERPA+OPENLOOPS % NNLO effect
B T S A T S .
PR e T g S-MCGONLO scale uncertainty
g ISE g
P o—— - s @ LO-like uncertainty (~100%) in
% o5 the tail irrelevant for ttHbb
. \ \ \
o w0 10 w0 @ NLO-like accuracy (~25%) up to

100GeV
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do/dpr [fb/GeV]

do/domcanio

Validation Plot 2:
ttb analysis (Np > 1)

ttb analysis (N, > 1): 1% light-jet pr distribution (responsible for double

splittings)

pr of 15t non-b jet (ttb cuts)
T

3
T

)

e N R N

1073 i

RV
T

S-MC@NLO vs NLO
@ Sudakov damping of NLO IR
singularity at pr — 0

@ 25% NLO excess in the hard tail
(probably due to dynamic pq,
multi-jet final state, unresolved

b-quark)

S-MCG@NLO scale uncertainty

@ LO-like uncertainty (~100%) in
the tail irrelevant for ttHbb

@ NLO-like accuracy (~30%) up to
70GeV

= NLO-like accuracy in the
region relevant for ttHbb
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Double g — bb splitting contributions

Mass o first two (bt (b cuts)

Consistent with MC enhancement

@ ttgg/ttbb ratio grows at same
rate of S-MCGONLO excess

@ emission of back-to-back small-pr
gluons enhanced by soft-collinear
singularity

Don't fit into conventional hard-scattering ttbb picture
@ present also in tt+jets LO merged samples
@ but large effect in hard ttHbb signal region unexpected
Implications for theory systematics in tt+HF
@ understanding PS systematics crucial (both for 4F ttbb or 5F tt-+jets)

@ in tTHbb signal region 4F tthb S-MC@NLO provides 1 g — bb splitting
at NLO

N.Moretti NLO simulation of tEH(bb) backgrounds



Why NLO matching for ttbb production in 4F scheme

b b-jet

t b-jet

5F scheme (m;,, = 0): ttbb MEs cannot describe collinear g — bb
splittings

= inclusive tt+b-jets simulation (quite important for exp. analyses!) requires
ttg+PS, i.e. tt+ <2 jets NLO merging

[Héche, Krauss, Maierhdfer,Pozzorini, Schonherr, Siegert ‘14]

4F scheme (my, > 0): ttbb MEs cover full b-quark phase space
= S-MC@NLO ttbb sufficient for inclusive tt+b-jets simulation

@ access to new tt -+ 2b-jets production mechanism wrt 5F scheme:
double collinear g — bb splittings (surprisingly important impact on
ttHbb analysis!)
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1R standard variations

tth

tthb

. ey = T
ttbbloo ‘ 5

N.Moretti NLO simulation of tEH(bb) backgrounds



