NLO simulation of $t\bar{t}H(b\bar{b})$ background

work in collaboration with Fabio Cascioli, Philipp Maierhöfer, Stefano Pozzorini, Frank Siegert

Niccoló Moretti University of Zurich

Zurich, September 11, 2014

$t\bar{t}H(b\bar{b})$ analysis: status and importance of precise theory simulations for signal and background

Status

- $t\bar{t}H(b\bar{b})$ not observed
- ullet ${
 m t} ar{{
 m t}} + {\it jets}$ simulation still based on LO MC tools
- related theory uncertainty is one of the main bottlenecks

95% exclusion in $\sigma_{\mathrm{t}\bar{\mathrm{t}}H}^{\mathrm{SM}}$ units	$H o { m b}ar{ m b}$	$H o VV^*$	$H o \gamma \gamma$
ATLAS	4.1 (2.6) 3.3 (2.9)		6.7 (4.9)
CMS	3.3 (2.9)	6.6 (2.4)	7.4 (5.7)

- experimental challenge: highly involved bbbblvjj signature
- theoretical challenge: NLO corrections to multi-particle backgrounds $pp \rightarrow t\bar{t}jj$, $t\bar{t}c\bar{c}$, $t\bar{t}b\bar{b}$

Theoretical predictions for ttbb and ttjj: status and needed improvements

• available: fixed-order NLO for ttbb and tt+jj (at 14 TeV)

parton-level results not applicable to experimental analysis
 → NLO+PS matching crucial in order to exploit strong reduction of
uncertainty

Theoretical predictions for ttbb and ttjj: status and needed improvements

Final goals

- NLO+PS simulations with different (N_j, N_b, N_c) multiplicity
- consistent merging in a single simulation
- ! NLO corrections to multi-particle FS processes needed
 - $gg
 ightarrow t ar{t} b ar{b} \ \mathsf{O}(10^3) \ 1$ -loop diagrams
 - $gg \to t \bar{t} gg \ \text{O}(10^4) \ \text{1-loop diagrams}$

- * inconceivable until few years ago, now feasible thanks to new automatic NLO tools
- \star but NLO matching and merging still significantly challenging

Simulation Tools: Sherpa + OpenLoops

$$= \sum_{i} d_{i} \underbrace{ \vdots }_{\vdots} \underbrace{ \vdots }$$

OpenLoops [Cascioli, Maierhöfer, S.P., PRL 108(2012)111601]

- fully automated loop-amplitude generator for NLO QCD
- conceived to break multi-particle bottlenecks (fast, numerically stable, flexible)
- now publicly available at http://openloops.hepforge.org

Sherpa2.1 [Hoeche, Hoeth, Krauss, Schoenherr, Schumann, Siegert, Zapp]

- Monte Carlo event generator
- fully automated interface to OpenLoops for NLO MEs
- automated matching (S-MC@NLO) and merging of jet multiplicities (MEPS@NLO)

New simulation of ttbb production

(i) 4F scheme: why?

5F scheme $(m_b = 0)$:

- ullet t $ar{t}bar{b}$ MEs cannot describe collinear $g o bar{b}$ splittings
- \Rightarrow inclusive $t\bar{t}+b$ -jets requires $t\bar{t}g+PS$ i.e., $t\bar{t}+\leq 2$ jets NLO merging required

4F scheme $(m_b > 0)$:

- ullet no b-quarks in the PDFS (only FS b-quarks from g o bar b splittings)
- full ttbb phase space with NLO ME predictions
- IR singularities from (soft and) collinear g o b ar b configurations converted into finite $\ln(m_b)$ terms
- can describe ttbb and also ttb final states with unresolved b-quark (important for ttH analysis)

New simulation of ttbb production (ii) NLO matched to PS

MC@NLO matching to Sherpa PS [S-MC@NLO]

- shower renders NLO calculations applicable to experimental analyses
- multi-parton emissions during evolution from hard scale to $\sim 1 {\rm GeV}$ \Rightarrow resummation of large logarithms in exclusive observables
- ullet ${
 m t}ar{{
 m t}}+{\it N}$ b-jets, with ${\it N}=3,4,\ldots$ via $g o {
 m b}ar{{
 m b}}$ PS splittings
- ⋆ hadronisation + UE

Sherpa parton shower kernel based on CS dipoles D_{ijk}

 $(\neq Pythia/Herwig)$

$$U(t_0, \mu_Q^2) = \Delta(t_0, \mu_Q^2) \mathcal{O}(\Phi_B) + \sum_{ijk} \int_{t_0}^{\mu_Q^2} d\Phi_{R|B} \frac{D_{ijk}(\Phi_R)}{B(\Phi_B)} \Delta(t, \mu_Q^2) \mathcal{O}(\Phi_R),$$

S-MC@NLO matching: NO double counting of first QCD emission (R, D_{ijk})

$$\begin{split} \langle \mathcal{O} \rangle &= \int \mathrm{d} \Phi_B \bigg[B(\Phi_B) + V(\Phi_B) + \sum_{ijk} \int \mathrm{d} \Phi_{R|B} D_{ijk}(\Phi_R) \theta(\mu_Q^2 - t) \bigg] \frac{U(t_0, \mu_Q^2)}{U(t_0, \mu_Q^2)} \\ &+ \int \mathrm{d} \Phi_R \bigg[R(\Phi_R) - \sum_{ijk} D_{ijk}(\Phi_R) \theta(\mu_Q^2 - t) \bigg] \mathcal{O}(\Phi_R). \end{split}$$

Setup of S-MC@NLO $t\bar{t}b\bar{b}$ simulation @ 8TeV in 4F scheme

[Cascioli , Maierhöfer, N.M. , Pozzorini, Siegert, Phys. Lett. B734 (2014) 210]

Categorisation according to number of b-jets

- anti- k_T jets with R = 0.4
- "physical" b-jet definition: any jet containing one or more b-quarks is considered b-jet (possible only with $m_b > 0$ matrix elements!)
- ullet classification of events according to the number N_b of QCD b-jets with

$$p_T > 25 \text{GeV}, \qquad |\eta| < 2.5$$

Results for the following subsamples

- ttb $(N_b \ge 1)$
- $ttbb (N_b \ge 2)$
- $ttbb_{100}$ $(N_b \ge 2)$ in the $t\bar{t}H(b\bar{b})$ signal region $m_{bb} > 100 {\rm GeV}$

Simulation results NLO vs S-MC@NLO cross sections

	ttb	ttbb	$ttbb(m_{\mathrm{bb}} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644^{+71\%}_{-38\%}~^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}~^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}~^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[{ m fb}]$	$3296^{+34\%}_{-25\%}~^{+5.6\%}_{-4.2\%}$	560 ^{+29%} +5.4% -24% -4.8%	$141.8^{+26\%}_{-22\%}~^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{ m MC}[{ m fb}]$	$3313^{+32\%}_{-25\%}~^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}~^{+2.0\%}_{-2.1\%}$	181.0 ^{+20%} +8.1% -20% -6.0%
$\sigma_{ m MC}/\sigma_{ m NLO}$	1.01	1.07	1.28

- good perturbative convergence: uncertainty goes from 70% (LO) to 20-30% (NLO)
- K-factors small and rather independent of selection ($t\bar{t}b$ sample free from large $ln(m_b)$ in 4F scheme)
- surprisingly large S-MC@NLO effect (\sim 30%) in Higgs-signal region of ttbb

m tar tb analysis $(N_b \ge 1)$ b-jet and top-quark distributions

Reliable perturbative prediction

- shape of 1st b-jet very stable wrt NLO corrections
- excellent S-MC@NLO vs NLO agreement (first principle theoretical prediction, small shower dependence)

Good stability

- moderate S-MC@NLO excess wrt to NLO
- ullet small distortions in bottom and top p_T

m_{b1b2}

Completely different behaviour

- NLO corrections remain quite flat
- ullet significant S-MC@NLO enhancement at large $\Delta R_{b_1b_2}$ and large $m_{b_1b_2}$
- reaches 30% at $m_{b1b2} \sim 125 {
 m GeV}$
- completely disappears if PS $g \to b\bar b$ splittings switched off! (MC@NLO_{2b} curve)

${ m tar tbar b}$ analysis $(N_b \ge 2)$ with $m_{b_1b_2} > 100{ m GeV}$

b-jet correlations

S-MC@NLO excess at large m_{bb} from back to back soft jets

- factor-2 enhancement at $\Delta R \sim \pi$
- factor-2 enhancement at small p_T

Consistent with soft-collinear behaviour of gluon-jet emissions

Contribution from double collinear $g\to b\bar b$ splittings (NOT present in $t\bar t b\bar b$ simulations in 5F scheme)

Theoretical (scale) uncertainties Scale choice(s)

Scale choice and variations are essential

- ullet multi-scale problem $m_b^2 \lesssim Q_{ij}^2 \lesssim m_{
 m tar t}^2$ (5 to 500 ${
 m GeV}$)
- factor 2 variation ightarrow O(80%) $\sigma_{t\bar{t}bar{b}}$ variation

Natural scale choice

Idea: factorization of hard $pp \to t\bar{t}$ (scale $\sim m_t \sim E_{T,t}$) plus b-jet emission ($\sim E_{T,b}$)

$$\Rightarrow \mu_{\mathrm{CMMPS}} = \sqrt[4]{\prod_{i=\mathrm{t},ar{\mathrm{t}},\mathrm{b},ar{\mathrm{b}}} E_{\mathrm{T},i}}$$

ightarrow small K-factors, no large logs \checkmark

Data uncertainties

usually NLO uncertainties estimated with factor 2 scale variations ($\mu = \xi \times \mu_{\rm CMMPS}$, with $\frac{1}{2} \le \xi \le 2$)

 \Rightarrow Is it enough?

2 kinds of uncertainties:

- Normalisation uncertainties
 - can be reduced with data driven approach
- Shape uncertainties
 - less constrained by experimental data
 - usual factor 2 scale variations are less appropriate for them
- ⇒ deep study of shape distortions is needed

Cross sections uncertainties

Consider *kinematic distortions* of μ_R, μ_F, μ_Q using various combinations of the variables

$$\begin{array}{ll} \mu_{\mathrm{CMMPS}}, & m_{\mathrm{b}\bar{\mathrm{b}}}, \\ H_{T,\mathrm{b}(\mathrm{t})} &= E_{T,\mathrm{b}(\mathrm{t})} + E_{T,\bar{\mathrm{b}}(\bar{\mathrm{t}})}, & H_{T} = H_{T,\mathrm{t}} + H_{T,\mathrm{b}} \end{array}$$

Scale	default	glo-HT	glo-Mt	glo-soft	R-Mbb	R-HTb	R-HTt	Q-CMMPS	Q-Mt
μ_{R}	μ_{CMMPS}	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$\left(m_{\mathrm{t}}m_{\mathrm{b}ar{\mathrm{b}}}\right)^{1/2}$	$(m_{\rm t} H_{T,{\rm b}}/2)^{1/2}$	$(m_{\rm t} H_{T,{\rm t}}/2)^{1/2}$	μ_{CMMPS}	μ_{CMMPS}
$\mu_{ m F}$	$H_{T,t}/2$	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$
μ_Q	$H_{T,t}/2$	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	μ_{CMMPS}	$m_{ m t}$
Cuts	$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma$				
ttb	0%	-41%	-27%	+4.7%	+2.3%	1.1%	-32%	-3.5%	-0.3%
ttbb	0%	-33%	-17%	-0.7%	+0.2%	3.4%	-22%	-6.4%	-1.1%
ttbb ₁₀₀	0%	-29%	-13%	-9.2%	-5.6%	+2.5%	-17%	-14%	-2.9%

glo single global scale: hard, fixed and softer

R renormalisation scale (dominant!): modify or avoid b-jet dependence

Q resummation-scale (PS uncertainties): softer and fixed

 \Rightarrow variation of relative $t\bar{t}b, t\bar{t}b\bar{b}, t\bar{t}b\bar{b}_{100}$ rates

Shape uncertainty of top- p_{T}

 $\Rightarrow \sim\!\!10\%$ shape variations (20% in the tails) driven by top-dependence of $\mu_{\rm R}$

Scale variations Shape uncertainty of b-jet p_T

 \Rightarrow $\sim\!\!10\mbox{-}20\%$ variations (40% in the tails) driven by b-dependence of $\mu_{\rm R}$

Shape uncertainty of b-jet correlations

 \Rightarrow \sim 10-20% variations driven by b-dependence of $\mu_{\rm R}$ (at small $m_{\rm bb}$ and ΔR) and (aggressive) reduction of μ_Q in the tail

Scale variations MC Samples

All predictions available for experimental analyses as a series of $\ensuremath{\mathsf{MC}}$ samples

- central scales
- normalisation + shape variations (scales, PDFs, Shower, $m_b \dots$)
- top decays
- fully showered
- hadronisation + UE

Summary

S-MC@NLO $t\bar{t}b\bar{b}$ simulation in the 4F scheme

- * MEs with $m_{\rm b} > 0$ cover full b-quark phase space \to complete ${\rm t\bar{t}}{+}{\rm b}{-}{\rm jets}$ simulation independent of ${\rm t\bar{t}}{+}{\rm light}{-}{\rm jets}$
- \star new b-jets production mechanism: double $g \to b\bar{b}$ splittings surprisingly important for $t\bar{t}H(b\bar{b})$ analysis
- \star S-MC@NLO: 20-30% normalisation and \sim 10% shape uncertainties
- deep study of shape uncertainties

[Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, Siegert '14]

- \Rightarrow $8 {\rm TeV}$ "all inclusive" samples available (UE , Hadronisation, Decays etc.) ready for experimental analysis
 - \bullet fundamental step towards complete $\mathrm{t}\overline{\mathrm{t}} + \mathsf{multi}\text{-jets }\mathrm{NLO}$ analysis

BACKUP slides

Warm-up: validation of tools

Validation of tools

- reproduced NLO ttbb tt+0,1,2 jets in the literature
- ullet new 8TeV LO and NLO ttbb σ_{tot} results for 3rd HXSWG report

setup	μ_0	$\sigma_{LO}[\mathit{fb}]$	$ar{\sigma}_{LO}[\mathit{fb}]$	$\sigma_{\mathit{NLO}}[\mathit{fb}]$	K	\bar{K}
<i>S</i> 1	Mt	$503(1)^{+84\%}_{-42\%}$	342(2) ^{+74%} _{-39%}	$671(3)^{+34\%}_{-28\%}$	1.34	1.96
<i>S</i> 1		$861(2)_{-45\%}^{+96\%}$	$557(3)^{+83\%}_{-42\%}$	$901(3)_{-27\%}^{+23\%}$	1.04	1.62
<i>S</i> 2	Mt	$37.21(7)_{-43\%}^{+87\%}$		$45.5(1)_{-26\%}^{+29\%}$	1.23	1.79
<i>S</i> 2	μ_{BDDP}	$54.8(1)_{-45\%}^{+95\%}$	$36.2(2)_{-42\%}^{+82\%}$	$54.3(2)_{-24\%}^{+18\%}$	0.99	1.50

- using "wise" scale essential for convergence of perturbation theory
- ullet NLO can reduce uncertainties up to $\sim 25\%$ at $8\,TeV$

Additional $m_{\rm b}$ and **PDF** variations with potential impact on shape (and normalisation)

	$M_b = 5.0$	$M_b = 4.5$	CTEQ 4F	MSTW ₃₇	MSTW ₃₈
Cuts	$\Delta \sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta \sigma/\sigma$
ttb	-3.5%	+4.4%	-10%	-0.1%	+2.6%
ttbb	-0.7%	+2.7%	-9.3%	+0.2%	+4.2%
ttbb ₁₀₀	-0.1%	+4.4%	-7.8%	-0.7%	+6.9%

- ullet conservative b-mass variations $m_{
 m b}=4.75\pm0.25{
 m GeV}$ (impact on collinear regions)
- compare central MSTW to central CT10 PDF and MSTW variations with large gluon-shape distortion (MSTW eigenvector 19)

Choice of $\mu_{ m R}$, $\mu_{ m F}$ and $\mu_{ m Q}$

Scale choice in $\alpha_S^4(\mu^2)$ is crucial

ullet widely separated scales $m_{
m b} \leq Q_{ij} \lesssim m_{
m tar{t}bar{b}}$ can generate huge logs

<code>Dynamical "BDDP" scale</code> [Bredenstein, Denner, Dittmaier, S. P. '10] guarantees good convergence by adapting to b-jet $p_{\rm T}$

$$\alpha_{\mathsf{S}}^{\mathsf{4}}(\mu_{\mathrm{BDDP}}^{2}) = \alpha_{\mathsf{S}}^{\mathsf{4}}(\mathbf{m}_{\mathsf{t}}\sqrt{p_{\mathrm{T},b1}p_{\mathrm{T},b2}}) \simeq \alpha_{\mathsf{S}}^{\mathsf{2}}(\mathbf{m}_{\mathsf{t}}^{2})\alpha_{\mathsf{S}}(p_{\mathrm{T},b1}^{2})\alpha_{\mathsf{S}}(p_{\mathrm{T},b2}^{2})$$

Natural generalisation (for $p_T \rightarrow 0$ region)

$$\mu_{
m R}^4 = \prod_{i={
m t},ar{
m t},{
m b},ar{
m b}} E_{{
m T},i} = \prod_{i={
m t},ar{
m t},{
m b},ar{
m b}} \sqrt{m_i^2 + p_{{
m T},i}^2}$$

Factorisation and Resummation scales (available phase space for QCD emission)

$$\mu_{\mathrm{F}} = \mu_{Q} = \frac{1}{2}(E_{\mathrm{T,t}} + E_{\mathrm{T,\bar{t}}})$$

Validation Plot 1: ttbb analysis $(N_b \ge 2)$

ttbb analysis ($N_b \ge 2$): 1^{st} light-jet p_T distribution

S-MC@NLO vs NLO

- in good (5%) agreement in the tail
- Sudakov damping of NLO IR singularity at $p_{\rm T} \to 0$
- \sim 25% deviation at intermediate p_{T} consistent with expected NNLO effect

S-MC@NLO scale uncertainty

- LO-like uncertainty (\sim 100%) in the tail irrelevant for $t\bar{t}Hb\bar{b}$
- NLO-like accuracy (\sim 25%) up to $100 {
 m GeV}$

Validation Plot 2: ttb analysis $(N_b \ge 1)$

ttb analysis ($N_b \ge 1$): 1^{st} light-jet p_T distribution (responsible for double splittings)

S-MC@NLO vs NLO

- Sudakov damping of NLO IR singularity at $p_{\rm T} \to 0$
- 25% NLO excess in the hard tail (probably due to dynamic μ_Q , multi-jet final state, unresolved b-quark)

S-MC@NLO scale uncertainty

- LO-like uncertainty (\sim 100%) in the tail irrelevant for $t\bar{t}Hb\bar{b}$
- NLO-like accuracy (\sim 30%) up to 70 ${
 m GeV}$
- \Rightarrow NLO-like accuracy in the region relevant for $t\bar{t}Hb\bar{b}$

Double $g \to b\bar{b}$ splitting contributions

Consistent with MC enhancement

- ttgg/ttbb ratio grows at same rate of S-MC@NLO excess
- ullet emission of back-to-back small- $p_{
 m T}$ gluons enhanced by soft-collinear singularity

Don't fit into conventional hard-scattering $t\bar{t}b\bar{b}$ picture

- present also in tt+jets LO merged samples
- \bullet but large effect in hard $t\bar{t}Hb\bar{b}$ signal region unexpected

Implications for theory systematics in $t\bar{t}+HF$

- understanding PS systematics crucial (both for 4F $t\bar{t}b\bar{b}$ or 5F $t\bar{t}+jets$)
- in $t\bar{t}Hb\bar{b}$ signal region 4F $t\bar{t}b\bar{b}$ S-MC@NLO provides 1^{st} $g \to b\bar{b}$ splitting at NLO

Why NLO matching for $t\bar{t}b\bar{b}$ production in 4F scheme

5F scheme ($m_{\rm b}=0$): ${\rm t\bar{t}b\bar{b}}$ MEs cannot describe collinear ${\rm g}\to{\rm b\bar{b}}$ splittings

 \Rightarrow inclusive $t\bar{t}+b$ -jets simulation (quite important for exp. analyses!) requires $t\bar{t}g+PS$, i.e. $t\bar{t}+$ $\leq\!2$ jets NLO merging

[Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, Siegert '14]

4F scheme ($m_{\rm b}>0$): ${
m t\bar{t}b\bar{b}}$ MEs cover full b-quark phase space

- \Rightarrow S-MC@NLO $t\bar{t}b\bar{b}$ sufficient for inclusive $t\bar{t}+$ b-jets simulation
 - access to new $t\bar{t}+2$ b-jets production mechanism wrt 5F scheme: double collinear $g\to b\bar{b}$ splittings (surprisingly important impact on $t\bar{t}Hb\bar{b}$ analysis!)

μR standard variations

