Motivation

Working Principle

Building the Cel

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Towards a Novel Muon Beamline for Next Generation Precision Experiments

Andreas Eggenberger

Eidgenössische Technische Hochschule Zürich

egandrea@phys.ethz.ch

PhD Seminar - 11th September 2014

Summary and Future Plans

Overview

Motivation - Why Muons are Interesting

Working Principle

Building the Helium Gas Target Cell

Summary and Future Plans

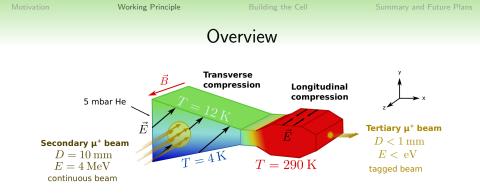
Why Muons are Interesting

Motivation

- Precise measurement of the muon g-2
- Search for the muon electric dipole moment
- Materials science using μ SR techniques
- New Muonium (Mu = $\mu^+ e^-$) source
 - Mu spectroscopy
 - Lepton flavor violation via Mu- \overline{Mu} oscillation
 - Antimatter gravity studies

Example: Muonium Spectroscopy

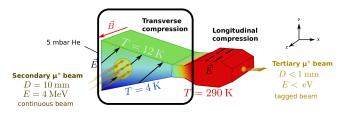
Measure 1S-2S energy interval and HFS


- Muon-electron mass ratio $\frac{m_{\mu}}{m_e} \rightarrow$ important for next generation g-2 experiment
- Charge equality between the first two lepton families $\frac{q_{\mu^+}}{q_{\mu^-}}$
- Shed light onto the "Proton Radius Puzzle" (muonic hydrogen, $p\mu^-$)
- In general: Test of bound-state QED

Working Principle

Facts and Figures

New low-energy μ^+ beamline is being developed at ETH & PSI


- \bullet Compressing the phase-space by a factor 10^{10}
- Sub-eV energy μ^+
- Beam size of $\mathcal{O}(mm^2)$
- Efficiency around $\mathcal{O}(10^{-3})$
- Add-on to existing standard surface μ^+ beamline

The compression process can be decomposed into three stages:

- Transverse compression
- Longitudinal compression
- Final compression and extraction into vacuum

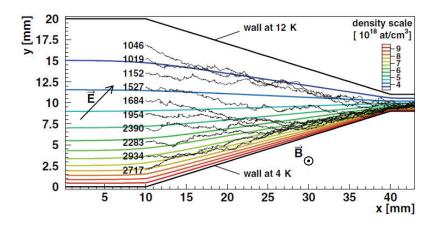
Transverse Compression

Key point: position-dependent drift velocity vector \vec{v}_D in gas $\vec{v}_D \propto \frac{|\mathbf{E}|}{1 + \omega^2 \tau^2} \left(\hat{\mathbf{E}} + \omega \tau \hat{\mathbf{E}} \times \hat{\mathbf{B}} + \omega^2 \tau^2 (\hat{\mathbf{E}} \cdot \hat{\mathbf{B}}) \hat{\mathbf{B}} \right)$ $\tau = \tau(p, T)$: mean free time $\hat{\mathbf{E}} = \frac{1}{\sqrt{2}} (1, 1, 0), \ |\vec{E}| \approx 2 \text{ kV/cm}$ $\omega = \frac{eB}{m_{\mu}}$: cyclotron frequency $\hat{\mathbf{B}} = (0, 0, 1), \ |\vec{B}| = 5 \text{ T}$

$ec{E} imes ec{B}$ fields and density gradient

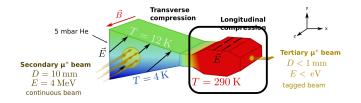
Choose $\hat{\textbf{E}}=\frac{1}{\sqrt{2}}(1,1,0)$ and $\hat{\textbf{B}}=(0,0,1)$ to obtain drift vector

$$ec{\mathbf{v}_D} \propto rac{|\mathbf{E}|}{1+\omega^2 au^2} \left(\hat{\mathbf{E}} + \omega au \hat{\mathbf{E}} imes \hat{\mathbf{B}}
ight)$$


Establish a density gradient in the helium gas target by means of a temperature gradient:

bottom of the cell: ${\sim}4$ K, top of the cell: ${\sim}12$ K

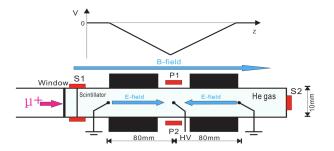
Drift direction


- μ^+ near the top: low density $\rightarrow \tau$ big $\rightarrow \hat{\mathbf{E}} \times \hat{\mathbf{B}}$ dominates
- μ^+ near the bottom: high density $\rightarrow \tau$ small $\rightarrow \hat{\mathbf{E}}$ dominates

Simulation

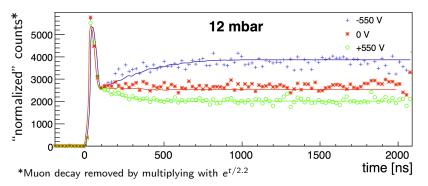
D. Taqqu, PRL 97, 194801 (2006)

Longitudinal Compression


Key point: position-dependent drift velocity vector \vec{v}_D in gas $\vec{v}_D \propto \frac{|\mathbf{E}|}{1 + \omega^2 \tau^2} \left(\hat{\mathbf{E}} + \omega \tau \hat{\mathbf{E}} \times \hat{\mathbf{B}} + \omega^2 \tau^2 (\hat{\mathbf{E}} \cdot \hat{\mathbf{B}}) \hat{\mathbf{B}} \right)$ $\tau = \tau(p, T)$: mean free time $\hat{\mathbf{E}} = (0, 0, \pm 1), |\vec{E}| \approx 60 \text{ V/cm}$ $\omega = \frac{eB}{m_u}$: cyclotron frequency $\hat{\mathbf{B}} = (0, 0, 1), |\vec{B}| = 5 \text{ T}$

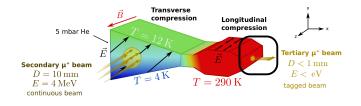
Experimentally tested in 2011 at PSI

Drift Direction


Choose $\hat{\textbf{E}}=(0,0,\pm1)$ and $\hat{\textbf{B}}=(0,0,1)$ to obtain drift vector

$$ec{\mathbf{v}_D} \propto rac{|\mathbf{E}|}{1+\omega^2 au^2} \left(\hat{\mathbf{E}} + \omega^2 au^2 (\hat{\mathbf{E}} \cdot \hat{\mathbf{B}}) \hat{\mathbf{B}}
ight)$$

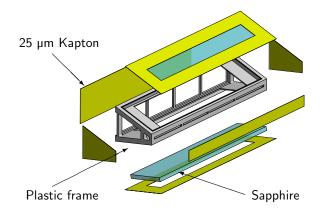
Y. Bao, PRL 112, 224801 (2014)


Results

Conclusion for longitudinal compression

- 16 cm μ^+ swarm compressed to 0.5 cm wide swarm in 2 μ s
- Improved experiment in December 2014
- Y. Bao, PRL 112, 224801 (2014)

Extraction into vacuum



Technically very challenging but no showstopper found we could think of yet. The basic idea exist and its realization will start beginning next year.

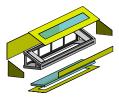
Construction of the Cryogenic Helium-Target Cell for Transverse Compression

Summary and Future Plans

Cryogenic Helium-Target Cell

Cell dimensions \approx 160 \times 50 \times 40 mm^3

Difficult Environment


Challenging demands for the materials:

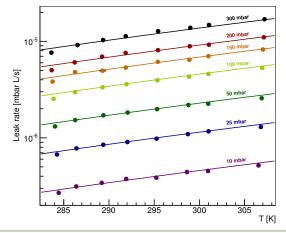
Have to deal with cryogenic temperatures, high \vec{E} and \vec{B} fields in helium gas as well as maintaining a static vertical density gradient.

- Sapphire or crystal quartz
- Plastic frame made by means of stereolithography
- 25 μ m thick Kapton foil

Helium Gas Leak Rate

Problem: He gas leak rate through Kapton foil rather high \rightarrow problem for insulating vacuum!

An exponential temperature dependence of the permeability P is expected from theory:


$$P(T) \propto \exp \frac{-E_p}{RT}$$
 : Permeability
Leak Rate $\left[\frac{\text{mbar L}}{\text{s}}\right] = P \cdot \frac{A}{d} \cdot \Delta p \cdot RT$

A: area; d: foil thickness; Δp : pressure difference; R: gas constant; T: temperature

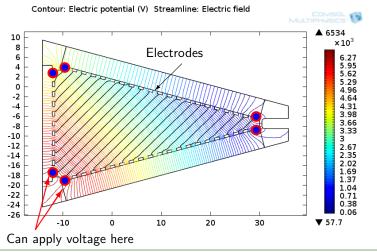
BUT: No conclusive literature values found!

Helium Gas Leak Rate

The leak rate of He gas through $A = 490 \text{ mm}^2$ Kapton foil $(d = 25 \text{ }\mu\text{m})$ was measured for various pressure differences Δp and temperatures T.

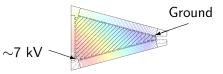
Motivation

Helium Gas Leak Rate


Leak rate decreases by 3 - 4 orders of magnitude at LN_2 .

T [K]	$\Delta p \; [ext{mbar}]$	Leak Rate $\left[\frac{mbar L}{s}\right]$	New 1.86×10−9 mbar×1/s P2=1.3×10-3 bar bar
300	50	$2.2\cdot 10^{-5}$	4 «]+ 10 ^{−07}
163	50	$3.0\cdot10^{-7}$	40]-
77	50	$O(10^{-9})$	09 0s608s_008s608s608s608s608s608s_008s608s608s608

\Rightarrow Helium gas loss at 77 K, 5 mbar and 50 cm 2 area: $\mathcal{O}(10^{-4}) \text{ mbar/day}$


Required Electric Field

Ideally:
$$\hat{\mathbf{E}} = \frac{1}{\sqrt{2}}(1,1,0)$$

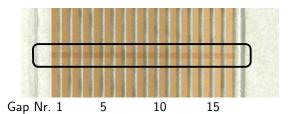
Electric Fields

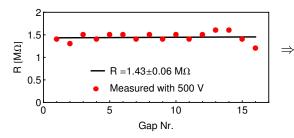
Electric fields of the order of 2 kV/cm create two central problems:

• Dielectric breakdown in gases. Need to consider \vec{B} -field, gas pressure and cryogenic temperature

• Joule heating: $P_{heating} = U^2/R$ with $U^2 \approx 10^8 \ {
m V}^2$

Cooling power of cryostat at 4 K: ${\sim}1$ W. Therefore


$$P_{heating} \stackrel{!}{\leq} 1W \Rightarrow R \stackrel{!}{\geq} 10^8 \Omega$$

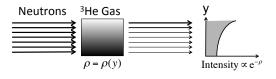

Using 1 mm spacing between 1 mm wide electrodes requires $R \approx 4 \text{ M}\Omega$ between electrodes.

Summary and Future Plans

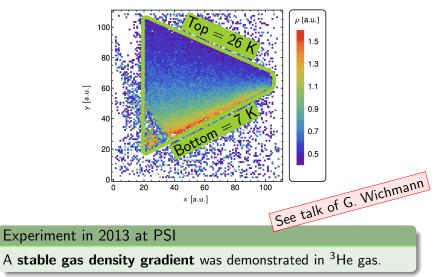
Electric Fields

Voltage divider: 20 Å graphite connecting the copper electrodes on Sapphire

Sufficiently homogeneous resistance between copper electrodes


Gas Density Gradient

Need a factor ≥ 3 in density between top and bottom of the cell for position-dependent $\vec{v_D}$. $\rho \approx 3\rho$


Neutron radiography

Huge absorption cross section for neutrons in ³He. The transmitted neutron intensity through the gas cell as function of the density ρ :

$$I(y) = I_0 e^{-\sigma L \rho(y)}, \quad \rho(y) = \frac{\rho}{k_B \cdot T(y)}$$

Gas Density Gradient

Next Step:

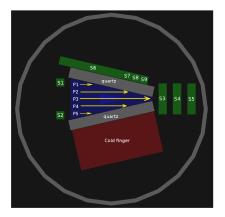
Beam test to demonstrate feasibility of transverse compression in 12/2014

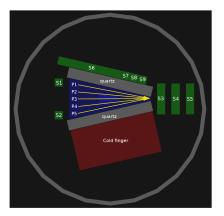
Two Major Difficulties

Electric field

- \bullet Electric breakdown I: E-field of ${\sim}200$ V/mm required ${\rightarrow}$ close to the Paschen minimum
- Electric breakdown II: Tests require the 5 T B-field, cryogenic temperatures and 5 mbar He gas
- How close can we get to the ideal field $\hat{\mathbf{E}} = 1/\sqrt{2} \cdot (1,1,0)$?

Cooling the cell to 4 K


- Need ${\sim}1$ m long cold finger to get inside the magnet \rightarrow what is the temperature at the end?
- How to couple the cell (i.e. the Sapphire) to minimize cooling power loss?

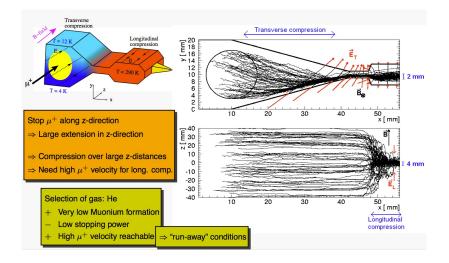

Working Principle

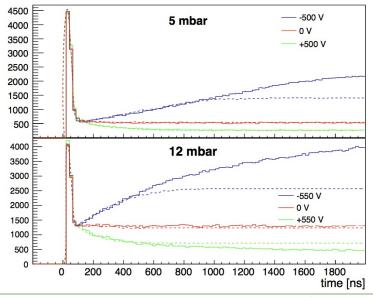
Building the Cel

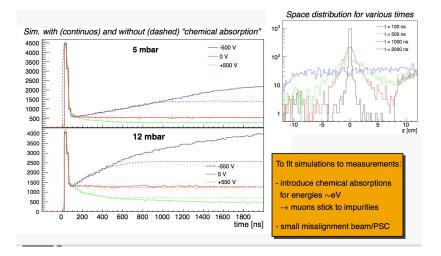
Summary and Future Plans

Data analysis...

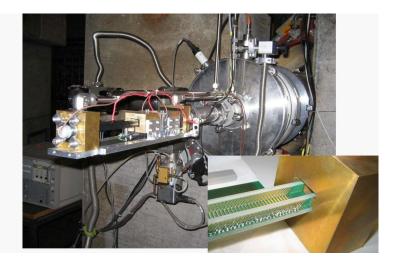
Summary: Take away messages


- $\bullet\,$ Compression of μ^+ beam relies on simple physical ideas
- Very challenging to build, but no showstopper so far
- Phase space compression by 10 orders of magnitude

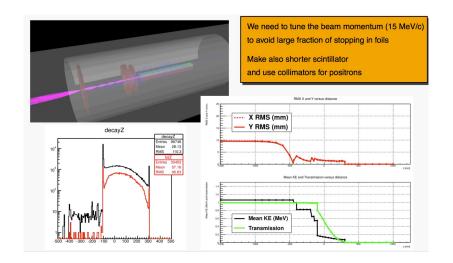

Thank you for your attention!


Questions???

Summary and Future Plans



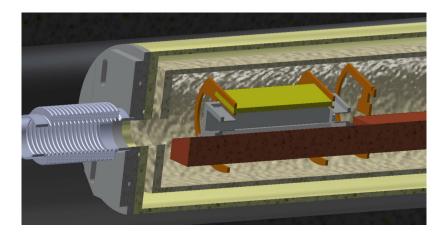
Summary and Future Plans

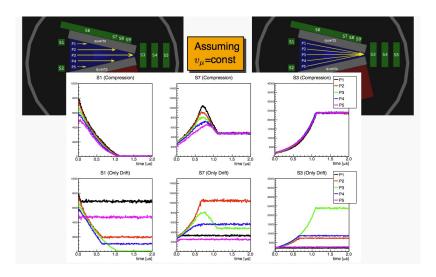

Back Up Slides

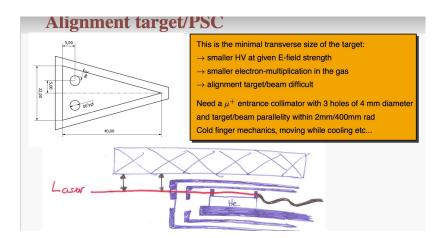
Working Principle

Building the Cel

Summary and Future Plans




Working Principle


Building the Cel

Summary and Future Plans

Back Up Slides

