Mott Scattering
 A Dedicated Calibration Method for the MEG Positron Spectrometer

Giada Rutar
Paul Scherrer Institut Villigen and ETH Zürich on behalf of the MEG Collaboration

PhD Seminar 2014

A very brief introduction to MEG

Search for the charged lepton flavour violating decay

$$
\mu^{+} \rightarrow e^{+}+\gamma
$$

with a sensitivity of few $\times 10^{-13}$

Standard Model
(with massive neutrinos)
$\mathrm{BR}(\mu \rightarrow \mathrm{e}+\gamma) \approx \mathrm{O}\left(10^{-54}\right)$

Beyond the SM physics
$\operatorname{BR}(\mu \rightarrow e+\gamma) \approx$ $\mathrm{O}\left(10^{-11}\right)-\mathrm{O}\left(10^{-14}\right)$

Observation would be clear evidence for BSM physics!
Null result provides constraints on BSM models

MEGs current status

upper limit on $\operatorname{BR}(\mu \rightarrow e+\gamma)$
5.7×10^{-13} @ 90\% CL
Phys. Rev. Lett. 110, 201801, published
13 May 2013
analysis of 2012 and 2013 sample currently underway
a new calibration method for the MEG spectrometer enters the stage...

MEGs current status

upper limit on $\operatorname{BR}(\mu \rightarrow e+\gamma)$
$5.7 \times 10^{-13} @ 90 \%$ CL
Phys. Rev. Lett. 110, 201801, published
13 May 2013
analysis of 2012 and 2013 sample currently underway
a new calibration method for the MEG spectrometer enters the stage...
... Mott scattering of positrons

MEG's location

Using one of the world's most intense continuous positive surface muon beams $\mathrm{O}\left(10^{8} \mu / \mathrm{sec}\right)$ at the Paul Scherrer Institut, Switzerland

MEG experimental apparatus

Eur. Phys. J. C, 73 (2013) 2365

MEG experimental apparatus

COBRA = COnstant Bending Radius
 gradient magnetic field

quickly sweep away
particles emitted at polar angles $\theta \approx 90^{\circ}$

projected bending radius independent of polar angle θ

Calibration of the e^{+}spectrometer

picture from http://www.weltderphysik.de

Calibration of the e^{+}spectrometer

How the Mott method works

- Make use of a monochromatic, momentum-tunable positron beam at $p \approx 53 \mathrm{MeV} / \mathrm{c}$ close to the MEG signal $52.8 \mathrm{MeV} / \mathrm{c}$ with an intrinsic beam spread of $\approx 250-350 \mathrm{keV} / \mathrm{c}$
- Allow positrons to Mott scatter off the MEG target (= light nuclei, $205 \mu \mathrm{~m}$ thickness)
- Mott cross section well-known

$$
\begin{gathered}
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha^{2} Z^{2}}{Q^{4}}\left(1-\frac{Q^{2}}{4 p_{0}^{2}}\right)\left|F\left(Q^{2}\right)\right|^{2} \quad \begin{array}{l}
\text { with } \mathrm{F}\left(\mathrm{Q}^{2}\right) \text { nuclear form factor, } \\
\mathrm{Z} \text { nuclear charge }
\end{array} \\
p=\frac{p_{0}}{1+\frac{p_{0}}{M}(1-\cos \theta)} \quad \begin{array}{l}
\text { momentum transfer } \mathrm{Q} \quad Q^{2}=4 p p_{0} \sin ^{2} \frac{\theta}{2} \\
\mathrm{M} \text { nuclear mass } \mathrm{p}_{0}, \mathrm{p}=\text { initial, final momentum }
\end{array}
\end{gathered}
$$

Mott data sample 2012

First high statistics data sample (ca. 5 days of DAQ), described well by Monte Carlo simulation with positron beam energy at $52 \mathrm{MeV} / \mathrm{c}$ and a beam spread of $350 \mathrm{keV} / \mathrm{c}$
$\sigma_{\text {tot }}{ }^{2}=\sigma_{\text {Mott }}{ }^{2}+\sigma_{\text {beam }}{ }^{2}$
measured
$\sigma_{\text {tot }} \approx 500 \pm 20 \mathrm{keV} / \mathrm{c}$
from MC simulation
$\sigma_{\text {beam }} \approx 350 \mathrm{keV} / \mathrm{c}$
consistent with
$\sigma_{\text {Mott }} \approx 350 \mathrm{keV} / \mathrm{c}$

What can we do with Mott data?

- Positron momentum and angular resolutions from double turn tracks ("double turn resolutions")
- Drift chamber alignment
- Detector efficiency and acceptance to extract muon beam polarization
- Track reconstruction validation
- Hints on faulty detector behavior

e^{+}momentum \& angular resolutions

Double Turn Tracks

Consider tracks which make two turns in the drift chamber region before hitting the timing counter

e^{+}momentum \& angular resolutions

How to extract them?

Advantage: Removes
contribution of beam spread

- treat the two turns independently
- propagate turn 1 and turn 2 to the target
- compute the difference $\left(A_{\text {turn } 1}-A_{\text {turn } 2}\right)$ for $A=p, \phi, \theta, y, z$

e^{+}momentum \& angular resolutions

observables

$$
A=p, \phi, \theta, y, z
$$

Mott DT resolutions consistent with DT resolutions obtained from Michel decay data

Check of Drift Chamber alignment

- Different methods to align the drift chamber exist
- An independent way to compare different alignment methods: use Mott data!

Idea: Mott scattering has no ϕ-dependence \rightarrow peak position of the Mott line as a function of ϕ should be constant

Check of Drift Chamber alignment

- Different methods to align the drift chamber exist
- An independent way to compare different alignment methods: use Mott data!

Idea: Mott scattering has no ϕ-dependence \rightarrow peak position of the Mott line as a function of ϕ should be constant

Check of Drift Chamber alignment

Example of non-aligned drift chambers
$\mathrm{p}[\mathrm{MeV} / \mathrm{c}]$

Data with nonaligned DCs

Monte Carlo simulation

Check of Drift Chamber alignment

Example of aligned drift chambers
$\mathrm{p}[\mathrm{MeV} / \mathrm{c}]$

Data with nonaligned DCs

Data with aligned DCs
Monte Carlo simulation

Check of Drift Chamber alignment

Comparison Mott line for non- and aligned DCs

Conclusion

- Mott scattering of positrons as calibration tool
- Extraction of positron momentum and angular resolutions from double turn tracks
- Check of Drift Chamber alignment
- Results are consistent with what is obtained from other kind of data
- Gives confidence in the results and analysis techniques since based on completely independent method!

MEG II

Upgrade will include newly designed spectrometer with increased complexity Mott calibration method will be a valuable tool!

Backup slides

DC alignment with Mott data

- What about aligning the DC with Mott data itself (as is being also done with Michel data)?
- "Software alignment": Iterative procedure

Process a set of raw data. For every chamber (treated as rigid body)...

1) ... histogram the residuals in r and z between the reconstructed tracks and their DC hits. Extract the average residual in r and z.
2) ... subtract from that particular DC's average residual the average residual over all chambers (such that mean residual of all chambers in both r and z equal to zero by construction)
3) ... correct the corresponding DC wire positions by the amount obtained in 2) and hand them over to the data base
reanalyze the runs with the new DC wire positions

MEG II

Newly designed positron spectrometer:

- cylindrical low mass stereo-wire drift chamber system
- 1200 sense wires, 8° stereo angle
- $1.7 \times 10^{-3} X_{0}$ per track (currently $2.0 \times 10^{-3} X_{0}$)
- pixelated timing counter system

Aimed (current) resolutions:
$\sigma\left(\mathrm{E}_{\mathrm{e}}\right) \sim 150$ (325) keV
$\sigma\left(\theta_{\mathrm{e}}, \phi_{\mathrm{e}}\right) \sim 5$ (7-11) mrad
$\sigma\left(\mathrm{t}_{\mathrm{e}}\right) \sim 30$ (70) ps

