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Fig. 1 Schematic view of the MEG detector showing one simulated signal event emitted from the target.

1 Introduction

A search for the Charged Lepton Flavour Violating (CLFV)
decay µ+ → e+γ, the MEG experiment (see [1] and refer-
ences therein for a detailed report of the experiment moti-
vation, design criteria and goals) is in progress at the Paul
Scherrer Institut (PSI) in Switzerland. Preliminary results
have already been published [2,3]. The goal is to push the
sensitivity to this decay down to ∼ 5×10−13 improving the
previous limit set by the MEGA experiment, 1.2×10−11 [4],
by a factor 20.

CLFV processes are practically forbidden in the Stan-
dardModel (SM), which, even in presence of neutrinomasses
and mixing, predicts tiny branching ratios (BR ≪ 10−50)
for CLFV decays. Detecting such decays would be a clear
indication of new physics beyond the SM, as predicted by
many extensions such as supersymmetry [5]. Hence, CLFV
searches with improved sensitivity either reveal new physics
or constrain the allowed parameter space of SM extensions.

In MEG positive muons stop and decay in a thin target
located at the centre of a magnetic spectrometer. The signal
has the simple kinematics of a two-body decay from a parti-
cle at rest: one monochromatic positron and one monochro-
matic photon moving in opposite directions each with an
energy of 52.83 MeV (half of the muon mass) and being
coincident in time.

This signature needs to be extracted from a background
induced by Michel (µ+ → e+νν) and radiative (µ+ → e+γνν)
muon decays. The background is dominated by accidental
coincidence events where a positron and a photon from dif-
ferent muon decays with energies close to the kinematic

limit overlap within the direction and time resolution of the
detector. Because the rate of accidental coincidence events
is proportional to the square of the µ+ decay rate, while
the rate of signal events is proportional only to the µ+ de-
cay rate, direct-current beams allow a better signal to back-
ground ratio to be achieved than for pulsed beams. Hence
we use the PSI continuous surface muon beam with inten-
sity ∼ 3 × 107 µ+/s (see Sect. 2).

A schematic of the MEG apparatus is shown in Fig. 1.
A magnet, COBRA (COnstant Bending RAdius), generates
a gradient magnetic field, for the first time among particle
physics experiments, with the field strength gradually de-
creasing at increasing distance along the magnet axis from
the centre.

This configuration is optimised to sweep low-momentum
positrons fromMichel decays rapidly out of the magnet, and
to keep the bending radius of the positron trajectories only
weakly dependent on their emission angle within the accep-
tance region (see Sect. 3).

The positron track parameters are measured by a set of
very lowmass Drift CHambers (DCH) designed to minimise
the multiple scattering (see Sect. 4). The positron time is
measured by a Timing Counter (TC) consisting of scintil-
lator bars read out by PhotoMultiplier Tubes (PMT) (see
Sect. 5).

For γ-ray detection, we have developed an innovative
detector using Liquid Xenon (LXe) as a scintillation mate-
rial viewed by PMTs submersed in the liquid. This detector
provides accurate measurements of the γ-ray energy and of
the time and position of the interaction point (see Sect. 6).
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4. Design of a drift chamber module

Each drift chamber module has a trapezoid shape. It is an open
frame geometry without any supporting structure towards the
inner side (see Fig. 2). This open frame construction reduces the
amount of material in the inner part of the spectrometer and
reduces background events due to positron annihilation-in-flight.

The chamber module consists of two detector planes which are
operated independently. These two planes are separated by the
so-called ‘‘middle cathode’’ which consists of two cathode foils
with a gap of 3mm. The wire frames contain alternating anode
and potential wires, stretched in the axial direction and mounted
with a pitch of 4.5mm. The shortest wire has a length of 40 cm,
the longest of 86 cm and the anode-cathode distance is 3.5mm. To
resolve left-right ambiguities one wire plane is shifted in the
radial direction by half a drift cell. The two detector planes are
enclosed in the so-called ‘‘hood cathode’’.

The middle cathode, as well as the hood cathode, are made of a
12:5mm thick polyimide foil with an aluminum deposition of
2500 Å thickness.

Thanks to such a low-mass construction, the amount of
material of one drift chamber module sums to an average value
of X0,module¼2.5"10#4 of a radiation length.

5. Charge division and vernier pattern

The determination of the z-position is based on the principle of
charge division. For this reason, the anode wires are resistive
wires made of nickel chromium with a resistance per unit length
of 2:2kO=m. In a first step, the z-coordinate is derived from the
ratio of the charges measured at both ends of the anode wire.
Following this method the z-coordinate can be measured to a
precision of better than 2% for each anode wire length.

In a second step, the information from the cathodes is used to
achieve a more accurate z-coordinate, by using a so-called
‘‘double-wedge’’ or ‘‘vernier pattern’’ structure [6] which is etched
on the cathode planes on both sides of the anode wire (see Fig. 3).
The resistance per unit length of the strips is 50O=m. The induced
charges on each vernier strip are related to the z-position due to
the double-wedge structure. In total there are four cathode signals
for each anode wire and to increase the capability of this method
the vernier pattern of one cathode plane is shifted by l=4 in axial
direction with respect to its partner plane.

6. Geometrical alignment

During the construction of each single frame the position of
the anode wires and of the zig-zag structure of the vernier pattern
was measured with respect to an alignment pin located at the
bottom left edge of the frame.

Each cathode hood is equipped with two target marks placed
on the most upstream and most downstream upper edge of the
cathode hood. After the assembly of a drift chamber module the
position of these identification marks was measured with respect
to the alignment pin which allows the alignment of the different
frames within the drift chamber module and which acts as a
reference for the wire positions as well as the positions of the
vernier structure.

All drift chamber modules are mounted in a support structure
made of carbon fibre in which the modules are mounted at 10.51
intervals. The surface of the support structure between two
adjacent drift chamber modules is also equipped with target

Fig. 1. View of the drift chamber system from the downstream side of the MEG
detector. The drift chamber modules are mounted in a half circle, whereas the
muon stopping target is placed in the centre.

Fig. 2. Anode frame with wires (front), ‘‘middle cathode’’ and ‘‘hood cathode’’
(back) of a drift chamber module.

Fig. 3. Double wedge or vernier pattern structure etched in the aluminum layer of
the cathode foil.

M. Hildebrandt / Nuclear Instruments and Methods in Physics Research A 623 (2010) 111–113112
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Table 2 Parameters of the COBRA magnet.

Coil Central Gradient Inner end Outer end Compensation

Conductivity Super Super Super Super Resistive
Inner dia. (mm) 699.1 809.1 919.1 919.1 2210
Outer dia. (mm) 711.6 820.6 929.5 929.5 2590
Length (mm) 240.3 110.4 189.9 749.2 265

z-coordinate of coil centre(mm) 0.8 ±235 ±405.4 ±874.95 ±1190
Layers 4 4 3 3 14

Turns (total) 1068 399 240 1548 280
Winding density(Turns/m) 4444.4 3614.1 1263.8 2066.2 1056.6

Inductance(H) 1.64 0.62 0.35 2.29 0.54
Current (A) 359.1 359.1 359.1 359.1 319.2
Energy E (kJ) 106 40 23 148 35
Weight M (kg) 9 4 7 28 1620
E/M (kJ/kg) 11.8 10.0 3.3 5.3 0.02
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Fig. 13 Concept of the gradient magnetic field of COBRA. The posi-
trons follow trajectories at a constant bending radius weakly dependent
on the emission angle θ (a) and those transversely emitted from the tar-
get (cos θ ∼ 0) are quickly swept away from the DCH (b).

is wound in four layers inside the 2mm-thick aluminium
support cylinder. Pure aluminium strips with a thickness of
100 µm are attached on the inner surface of the coil structure
in order to increase the thermal conductivity. Several quench
protection heaters are attached to all coils in order to avoid
a local energy dump in case of a quench. The high thermal
conductivity of the coil structure and the uniform quench in-
duced by the protection heaters are important to protect the
magnet.
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Fig. 14 Hit rate of the Michel positrons as a function of the radial
distance from the target in both the gradient and uniform field cases.

Fig. 15 Cross-sectional view of the COBRA magnet.

A high-strength aluminium stabilised conductor is used
for the superconducting coils to minimise the thickness of
the support cylinder. The cross-sectional view of the con-
ductor is shown in Fig. 17. A copper matrix NbTi multi-
filamentary corewire is clad with aluminium stabiliser which
is mechanically reinforced by means of “micro-alloying”
and “cold work hardening” [13,14]. The overall yield strength
of the conductor is measured to be higher than 220 MPa at
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A high-strength aluminium stabilised conductor is used
for the superconducting coils to minimise the thickness of
the support cylinder. The cross-sectional view of the con-
ductor is shown in Fig. 17. A copper matrix NbTi multi-
filamentary corewire is clad with aluminium stabiliser which
is mechanically reinforced by means of “micro-alloying”
and “cold work hardening” [13,14]. The overall yield strength
of the conductor is measured to be higher than 220 MPa at
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Fig. 33 A fit to the distribution of δφe ≡ φ1st turn
e − φ2nd turn

e on double-
turn events. The distribution is fitted with a double Gaussian function
convolved with itself, and the corresponding core and tail widths are
shown, along with the fraction of events in the core component.

are applied, the resolutions are σye = 1.1 ± 0.1 mm in the
core (86.7%), σye = 5.3 ± 3.0 mm in the tail and σze =
2.5 ± 1.0 mm. The resolutions for Monte Carlo events are
σMCye = 1.0 ± 0.1 mm in the core and σMCze = 2.9 ± 0.3 mm.
The values of σye are corrected for the correlation with the
positron energy assumed to be the signal energy.

The design resolution was σye ,ze ∼ 1.0 mm without cor-
recting for correlation.

4.10.4 Energy Resolution

The positron energy resolution is measured with a fit of the
energy distribution to the unpolarised Michel spectrum mul-
tiplied by an acceptance function and convolved with a res-
olution function:

Probability density(Emeasurede ) =
(Michel ∗ Acceptance)(Etruee ) ⊗ Resolution. (6)

Functional forms for both the acceptance and the resolu-
tion functions are based on the guidance provided by Monte
Carlo simulation. The acceptance function is assumed to be:

Acceptance(Etruee ) =
1 + er f ( E

true
e −µacc√

2σacc
)

2
, (7)

and the resolution function is taken to be a double Gaus-
sian. The acceptance and the resolution parameters are ex-
tracted from the fit, as shown in Fig. 34. This gives an av-
erage resolution of σEe = 330 ± 16 keV in the core (82%)
and σEe = 1.13 ± 0.12 MeV in the tail. There is also a 60
keV systematic underestimation of the energy, to which we
associate a conservative 25 keV systematic uncertainty from
Monte Carlo studies. This is to be compared with the reso-
lution goal of σEe = 180 keV (0.8% FWHM).

A complementary approach to determining the positron
energy resolution is possible by using two-turn events as for
the angular resolution. Figure 35 shows the distribution of
the energy difference between the two turns. This is fit to
the convolution of a double Gaussian function with itself,
the same shape assumed in the fit of the edge of the Michel
spectrum. A disadvantage of this technique is its inability
to detect a global shift in the positron energy scale. This
technique gives an average resolution of σEe = 330 keV
in the core (79%) and σEe = 1.56 MeV in the tail, in reason-
able agreement with the results obtained from the fit of the
Michel spectrum. A systematic offset of 108 keV between
the energies of the two turns also appears; the energy of the
first turn is systematically larger than the energy of the sec-
ond turn. A related effect is the dependence of the measured
Michel edge on θe. These effects point to errors in the mag-
netic field mapping.
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Fig. 34 A fit to the Michel positron energy spectrum. The theoretical
spectrum (dashed black), the resolution function (dashed blue) and the
acceptance curve (in the bottom plot) are also shown.

4.10.5 Chamber detection efficiency

The relative efficiency of each chamber plane is measured
as the probability to have a reconstructed hit when its neigh-
bouring plane in the same chamber has at least one hit as-
sociated to a track. This probability is called the “hardware”
efficiency, while the probability to have a hit associated to
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are applied, the resolutions are σye = 1.1 ± 0.1 mm in the
core (86.7%), σye = 5.3 ± 3.0 mm in the tail and σze =
2.5 ± 1.0 mm. The resolutions for Monte Carlo events are
σMCye = 1.0 ± 0.1 mm in the core and σMCze = 2.9 ± 0.3 mm.
The values of σye are corrected for the correlation with the
positron energy assumed to be the signal energy.

The design resolution was σye ,ze ∼ 1.0 mm without cor-
recting for correlation.

4.10.4 Energy Resolution

The positron energy resolution is measured with a fit of the
energy distribution to the unpolarised Michel spectrum mul-
tiplied by an acceptance function and convolved with a res-
olution function:

Probability density(Emeasurede ) =
(Michel ∗ Acceptance)(Etruee ) ⊗ Resolution. (6)

Functional forms for both the acceptance and the resolu-
tion functions are based on the guidance provided by Monte
Carlo simulation. The acceptance function is assumed to be:

Acceptance(Etruee ) =
1 + er f ( E

true
e −µacc√

2σacc
)

2
, (7)

and the resolution function is taken to be a double Gaus-
sian. The acceptance and the resolution parameters are ex-
tracted from the fit, as shown in Fig. 34. This gives an av-
erage resolution of σEe = 330 ± 16 keV in the core (82%)
and σEe = 1.13 ± 0.12 MeV in the tail. There is also a 60
keV systematic underestimation of the energy, to which we
associate a conservative 25 keV systematic uncertainty from
Monte Carlo studies. This is to be compared with the reso-
lution goal of σEe = 180 keV (0.8% FWHM).

A complementary approach to determining the positron
energy resolution is possible by using two-turn events as for
the angular resolution. Figure 35 shows the distribution of
the energy difference between the two turns. This is fit to
the convolution of a double Gaussian function with itself,
the same shape assumed in the fit of the edge of the Michel
spectrum. A disadvantage of this technique is its inability
to detect a global shift in the positron energy scale. This
technique gives an average resolution of σEe = 330 keV
in the core (79%) and σEe = 1.56 MeV in the tail, in reason-
able agreement with the results obtained from the fit of the
Michel spectrum. A systematic offset of 108 keV between
the energies of the two turns also appears; the energy of the
first turn is systematically larger than the energy of the sec-
ond turn. A related effect is the dependence of the measured
Michel edge on θe. These effects point to errors in the mag-
netic field mapping.
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Fig. 34 A fit to the Michel positron energy spectrum. The theoretical
spectrum (dashed black), the resolution function (dashed blue) and the
acceptance curve (in the bottom plot) are also shown.

4.10.5 Chamber detection efficiency

The relative efficiency of each chamber plane is measured
as the probability to have a reconstructed hit when its neigh-
bouring plane in the same chamber has at least one hit as-
sociated to a track. This probability is called the “hardware”
efficiency, while the probability to have a hit associated to
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are applied, the resolutions are σye = 1.1 ± 0.1 mm in the
core (86.7%), σye = 5.3 ± 3.0 mm in the tail and σze =
2.5 ± 1.0 mm. The resolutions for Monte Carlo events are
σMCye = 1.0 ± 0.1 mm in the core and σMCze = 2.9 ± 0.3 mm.
The values of σye are corrected for the correlation with the
positron energy assumed to be the signal energy.

The design resolution was σye ,ze ∼ 1.0 mm without cor-
recting for correlation.

4.10.4 Energy Resolution

The positron energy resolution is measured with a fit of the
energy distribution to the unpolarised Michel spectrum mul-
tiplied by an acceptance function and convolved with a res-
olution function:

Probability density(Emeasurede ) =
(Michel ∗ Acceptance)(Etruee ) ⊗ Resolution. (6)

Functional forms for both the acceptance and the resolu-
tion functions are based on the guidance provided by Monte
Carlo simulation. The acceptance function is assumed to be:

Acceptance(Etruee ) =
1 + er f ( E

true
e −µacc√

2σacc
)

2
, (7)

and the resolution function is taken to be a double Gaus-
sian. The acceptance and the resolution parameters are ex-
tracted from the fit, as shown in Fig. 34. This gives an av-
erage resolution of σEe = 330 ± 16 keV in the core (82%)
and σEe = 1.13 ± 0.12 MeV in the tail. There is also a 60
keV systematic underestimation of the energy, to which we
associate a conservative 25 keV systematic uncertainty from
Monte Carlo studies. This is to be compared with the reso-
lution goal of σEe = 180 keV (0.8% FWHM).

A complementary approach to determining the positron
energy resolution is possible by using two-turn events as for
the angular resolution. Figure 35 shows the distribution of
the energy difference between the two turns. This is fit to
the convolution of a double Gaussian function with itself,
the same shape assumed in the fit of the edge of the Michel
spectrum. A disadvantage of this technique is its inability
to detect a global shift in the positron energy scale. This
technique gives an average resolution of σEe = 330 keV
in the core (79%) and σEe = 1.56 MeV in the tail, in reason-
able agreement with the results obtained from the fit of the
Michel spectrum. A systematic offset of 108 keV between
the energies of the two turns also appears; the energy of the
first turn is systematically larger than the energy of the sec-
ond turn. A related effect is the dependence of the measured
Michel edge on θe. These effects point to errors in the mag-
netic field mapping.
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Fig. 34 A fit to the Michel positron energy spectrum. The theoretical
spectrum (dashed black), the resolution function (dashed blue) and the
acceptance curve (in the bottom plot) are also shown.

4.10.5 Chamber detection efficiency

The relative efficiency of each chamber plane is measured
as the probability to have a reconstructed hit when its neigh-
bouring plane in the same chamber has at least one hit as-
sociated to a track. This probability is called the “hardware”
efficiency, while the probability to have a hit associated to
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are applied, the resolutions are σye = 1.1 ± 0.1 mm in the
core (86.7%), σye = 5.3 ± 3.0 mm in the tail and σze =
2.5 ± 1.0 mm. The resolutions for Monte Carlo events are
σMCye = 1.0 ± 0.1 mm in the core and σMCze = 2.9 ± 0.3 mm.
The values of σye are corrected for the correlation with the
positron energy assumed to be the signal energy.

The design resolution was σye ,ze ∼ 1.0 mm without cor-
recting for correlation.

4.10.4 Energy Resolution

The positron energy resolution is measured with a fit of the
energy distribution to the unpolarised Michel spectrum mul-
tiplied by an acceptance function and convolved with a res-
olution function:

Probability density(Emeasurede ) =
(Michel ∗ Acceptance)(Etruee ) ⊗ Resolution. (6)

Functional forms for both the acceptance and the resolu-
tion functions are based on the guidance provided by Monte
Carlo simulation. The acceptance function is assumed to be:

Acceptance(Etruee ) =
1 + er f ( E

true
e −µacc√

2σacc
)

2
, (7)

and the resolution function is taken to be a double Gaus-
sian. The acceptance and the resolution parameters are ex-
tracted from the fit, as shown in Fig. 34. This gives an av-
erage resolution of σEe = 330 ± 16 keV in the core (82%)
and σEe = 1.13 ± 0.12 MeV in the tail. There is also a 60
keV systematic underestimation of the energy, to which we
associate a conservative 25 keV systematic uncertainty from
Monte Carlo studies. This is to be compared with the reso-
lution goal of σEe = 180 keV (0.8% FWHM).

A complementary approach to determining the positron
energy resolution is possible by using two-turn events as for
the angular resolution. Figure 35 shows the distribution of
the energy difference between the two turns. This is fit to
the convolution of a double Gaussian function with itself,
the same shape assumed in the fit of the edge of the Michel
spectrum. A disadvantage of this technique is its inability
to detect a global shift in the positron energy scale. This
technique gives an average resolution of σEe = 330 keV
in the core (79%) and σEe = 1.56 MeV in the tail, in reason-
able agreement with the results obtained from the fit of the
Michel spectrum. A systematic offset of 108 keV between
the energies of the two turns also appears; the energy of the
first turn is systematically larger than the energy of the sec-
ond turn. A related effect is the dependence of the measured
Michel edge on θe. These effects point to errors in the mag-
netic field mapping.
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Fig. 34 A fit to the Michel positron energy spectrum. The theoretical
spectrum (dashed black), the resolution function (dashed blue) and the
acceptance curve (in the bottom plot) are also shown.

4.10.5 Chamber detection efficiency

The relative efficiency of each chamber plane is measured
as the probability to have a reconstructed hit when its neigh-
bouring plane in the same chamber has at least one hit as-
sociated to a track. This probability is called the “hardware”
efficiency, while the probability to have a hit associated to

Monochroma2c(e+(Beam$

“line”$instead$of$an$“edge”$
$
$
perform$some$of$the$
abovePmen4oned$tasks$in$
a$totally$independent(way(
$
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Calibra4on$of$the$e+$spectrometer$



•  Make$use$of$a$monochroma2c,(momentumEtunable(positron(
beam(at$p$≈$53$MeV/c$close(to(the(MEG(signal(52.8(MeV/c$
with$an$intrinsic$beam$spread$of$≈$250$P$350$keV/c$

•  Allow$positrons$to$Mo7(sca7er(off$the$MEG$target$$$$$$$$$$$$$$$$$$
(=$light$nuclei,$205$μm$thickness)$$

•  Mo#$cross$sec4on$wellPknown$

$

PhD$Seminar$2014$

d�

dQ2
=

4⇡↵2Z2

Q4

✓
1� Q2

4p20

◆ ��F (Q2)
��2

Q2 = 4pp0 sin
2 ✓

2
p =

p0
1 +

p0

M (1� cos ✓) with$p0,$p$=$ini4al,$final$momentum$
M$nuclear$mass$

momentum$transfer$Q$

with$F(Q2)$nuclear$form$factor,$$
Z$nuclear$charge$$$
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How$the$Mo#$method$works$



First$high$sta4s4cs$data$sample$(ca.$5$days$of$DAQ),$described$well$
by$Monte$Carlo$simula4on$with$positron$beam$energy$at$52$MeV/c$$
and$a$beam$spread$of$350$keV/c$

σtot
2$=$σMo#

2$+$σbeam
2$

$

$

PhD$Seminar$2014$

measured$
σtot$≈$500$±$20$keV/c$

$

from$MC$simula4on$
σbeam$≈$350$keV/c$

$

consistent$with$
σMo#$≈$350$keV/c$

$

11.9.14$ 11$

Mo#$data$sample$2012$



(
•  Positron(momentum(and(angular(

resolu2ons(from(double(turn(tracks(
(“double(turn(resolu2ons”)$

•  DriT(chamber(alignment$
•  Detector$efficiency$and$acceptance$to$

extract$muon$beam$polariza4on$

•  Track$reconstruc4on$valida4on$
•  Hints$on$faulty$detector$behavior$
$$

PhD$Seminar$2014$
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What$can$we$do$with$Mo#$data?$
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Consider$tracks$which$make$two$
turns$in$the$drik$chamber$region$
before$hiÑng$the$4ming$counter$

$

e+$momentum$&$angular$resolu4ons$$

Double(Turn(Tracks(
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•  treat$the$two$turns$independently$
•  propagate$turn$1$and$turn$2$to$the$target$
•  compute$the$difference$(Aturn$1$–$Aturn$2)$for$A=$p,$φ,$θ,$y,z$

x$

z$ y$

How$to$extract$
them?$

11.9.14$ 14$

e+$momentum$&$angular$resolu4ons$$

Advantage:$Removes$
contribu4on$of$beam$spread$
$
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observables$$
A=$p,$φ,$θ,$y,$z$

$

Mo#$DT$resolu4ons$
consistent$with$DT$
resolu4ons$obtained$

from$Michel$decay$data$
$
$

σcore=$287±5$keV/c$ σcore=$11.3±0.3$mrad$ σcore=$9.0±0.3$mrad$

σcore=$1.74±0.03$mm$ σcore=$2.44±0.08$mm$
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e+$momentum$&$angular$resolu4ons$$



•  Different$methods$to$align$the$drik$chamber$exist$

•  An$independent$way$to$compare$different$alignment$methods:$
use$Mo#$data!$$

$

Idea:$Mo#$sca#ering$has$no$φPdependence$!$peak$posi4on$of$
the$Mo#$line$as$a$func4on$of$φ$should$be$constant$

PhD$Seminar$2014$11.9.14$ 16$

Check$of$Drik$Chamber$alignment$$



•  Different$methods$to$align$the$drik$chamber$exist$

•  An$independent$way$to$compare$different$alignment$methods:$
use$Mo#$data!$$

$

Idea:$Mo#$sca#ering$has$no$φPdependence$!$peak$posi4on$of$
the$Mo#$line$as$a$func4on$of$φ$should$be$constant$
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Monte$Carlo$
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Phi
-40 -20 0 20 40 60

M
ea

n 
of

 D
is

tri
bu

tio
n 

[M
eV

]

49

49.5

50

50.5

51

51.5

52

52.5

53

53.5

54

MC simulation

Mean of Positron Energy Distribution in Bins of Phi

p$[MeV/c]$

Φ$[deg]$stat.$error$bars$not$
visible$in$this$scale$

11.9.14$ 17$

Check$of$Drik$Chamber$alignment$$



Example$of$nonPaligned$drik$chambers$
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Check$of$Drik$Chamber$alignment$$



Example$of$aligned$drik$chambers$
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Check$of$Drik$Chamber$alignment$$
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Comparison$Mo#$line$for$nonP$and$aligned$DCs$
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σnonaligned$$$≈$675$keV/c$

σaligned$$$$$$$$$$≈$420$keV/c$

μnonaligned$$$≈$52.2$MeV/c$

μaligned$$$$$$$$$≈$51.9$keV/c$
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Check$of$Drik$Chamber$alignment$$
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•  Mo#$sca#ering$of$positrons$as$calibra4on$tool$
– Extrac4on$of$positron$momentum$and$angular$
resolu4ons$from$double$turn$tracks$

– Check$of$Drik$Chamber$alignment$

•  Results$are$consistent$with$what$is$obtained$
from$other$kind$of$data$

– Gives$confidence$in$the$results$and$analysis$
techniques$since$based$on$completely$
independent$method!$$
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Conclusion$
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Upgrade$will$include$newly$designed$spectrometer$
with$increased$complexity$–$$

Mo#$calibra4on$method$will$be$a$valuable$tool!$$$

aiming$at$10$×$be#er$sensi4vity$$$
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MEG$II$
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Backup$slides$



•  What$about$aligning$the$DC$with$Mo#$data$itself$(as$is$being$
also$done$with$Michel$data)?$

•  “Sokware$alignment”:$Itera4ve$procedure$$

$$$$$$Process$a$set$of$raw$data.$For$every$chamber$(treated$as$rigid$body)...$

1)$...$histogram$the$residuals$in$r$and$z$between$the$reconstructed$tracks$
and$their$DC$hits.$Extract$the$average(residual(in(r(and(z.$
2)$...$subtract(from$that$par4cular$DC’s$average$residual$the(average(
residual(over(all(chambers$(such$that$mean$residual$of$all$chambers$in$
both$r$and$z$equal$to$zero$by$construc4on)$

3)$...$correct$the$corresponding$DC(wire(posi2ons(by$the$amount$
obtained$in$2)$and$hand$them$over$to$the$data$base$

$

$ 24$

reanalyze$the$runs$with$the$new$DC$wire$posi4ons$

DC$alignment$with$Mo#$data$
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MEG$II$

Aimed((current)(resolu2ons:$$
σ(Ee)$~$150$(325)$keV$
σ(θe,φe)$~$5$(7P11)$mrad$
σ(te)$~$30$(70)$ps$$

Newly(designed(positron(spectrometer:$$
P  cylindrical$low$mass$stereoPwire$drik$chamber$

system$
P  1200$sense$wires,$8°$stereo$angle$
P  1.7$x$10P3$X0$per$track$(currently$2.0$x$10

P3$X0)$
P  pixelated$4ming$counter$system$


