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Introduction and motivation

Introduction and motivation

Physical cross section at 1-loop (all well known!):

σ = σV + σR =

∫

dΦV |MV |
2 +

∫

dΦR|MR|
2

In all dimensional schemes space-time is continued from 4 to
D = 4− 2ǫ dimensions
⇒ momentum integrals become well-defined and UV and IR
singularities appear as 1/ǫk-poles.
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⇒ σR.S. =

∫

dΦV |MV (. . . , [g], . . . )|
2

︸ ︷︷ ︸
a

ǫ2
+ b

ǫ
+c+ǫ d+ǫ2e+...

+

∫

dΦR|MR(. . . , [g], . . . )|
2

︸ ︷︷ ︸

−
a

ǫ2
−

b

ǫ
+l+ǫm+ǫ2n+...

= σfinite+ǫ σ1 + ǫ2σ2 + . . .
︸ ︷︷ ︸

scheme dep.

and we get for the physical cross section

σ = lim
ǫ→0

σR.S. = σfinite
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A different (but consistent) treatment of the gluon metric in the
amplitude will modify the scheme dep. in the virtual and real
contribution, keeping however the physical cross-section invariant
[Signer and Stöckinger, 2008].
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contribution, keeping however the physical cross-section invariant
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⇒ The purely D-dim. treatment of all objects is conceptually
simpler, but it breaks supersymmetry.
The 4-dim. treatment of the gluon is better compatible with
supersymmetry and it is more amenable to helicity methods,
which are commonly used to simplify QCD higher-order
calculations.
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Introduction and motivation

A different (but consistent) treatment of the gluon metric in the
amplitude will modify the scheme dep. in the virtual and real
contribution, keeping however the physical cross-section invariant
[Signer and Stöckinger, 2008].

⇒ The purely D-dim. treatment of all objects is conceptually
simpler, but it breaks supersymmetry.
The 4-dim. treatment of the gluon is better compatible with
supersymmetry and it is more amenable to helicity methods,
which are commonly used to simplify QCD higher-order
calculations.

⇒ At two-loop the scheme dependence is not well
understood yet, but thanks to our calculations we have
now the complete knowledge of the double virtual
amplitude, which allow one to predict the difference
between two schemes for any virtual amplitude in
massless QCD up to two-loop.



Regularization scheme dependence of two-loop amplitudes

Schemes

Schemes
Variants of dimensional regularization and dimensional reduction

In order to define new schemes one needs to distinguish three spaces:

the original 4-dimensional space (4S) with metric tensor gµν

the ”quasi-D-dimensional space” (QDS) with metric tensor ĝµν

the ”quasi-4-dimensional space” (Q4S) with metric tensor gµν
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Schemes
Variants of dimensional regularization and dimensional reduction

The dimensionality of the spaces are expressed by the following
equations [Stöckinger, 2005]:

(Q4S) : gµνgµν = Ds = 4

(QDS) : ĝµν ĝµν = D = 4− 2ǫ

(4S) : gµνgµν = 4

and
gµν ĝρν = ĝµρ, gµνgρν = gµρ, ĝµνgρν = gµρ

Q4S ⊃ QDS ⊃ 4S
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Variants of dimensional regularization and dimensional reduction

Only gluons that appear inside a divergent loop or phase space
integral need to be regularized

(a)

(b)

external

internal

Figure : (a): loop-diagram. (b): gluon splitting into two collinear gluons.
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dimensional regularization

CDR (”conventional dimensional regularization”): Here internal
and external gluons (and other vector fields) are all treated as
D-dimensional.

HV (”’t Hooft Veltman scheme”): Internal gluons are treated as
D-dimensional but external ones are treated as strictly
4-dimensional.
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Schemes
Variants of dimensional regularization and dimensional reduction

dimensional regularization

CDR (”conventional dimensional regularization”): Here internal
and external gluons (and other vector fields) are all treated as
D-dimensional.

HV (”’t Hooft Veltman scheme”): Internal gluons are treated as
D-dimensional but external ones are treated as strictly
4-dimensional.

dimensional reduction

DRED (”original/old dimensional reduction”): Internal and
external gluons are all treated as quasi-4-dimensional.

FDH (”four-dimensional helicity scheme”): Internal gluons are
treated as quasi-4-dimensional but external ones are treated as
strictly 4-dimensional.
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The crucial step is to split quasi-4-dimensional gluons into
D-component gauge fields and Nǫ = 2ǫ scalar fields, so called ǫ-scalars:
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D-component gauge fields and Nǫ = 2ǫ scalar fields, so called ǫ-scalars:

gµν = ĝµν
︸︷︷︸

D−dimensional

+ g̃µν
︸︷︷︸

2ǫ−dimensional

g̃µν g̃µν = 4−D = 2ǫ,

gµν g̃ρν = g̃µρ, ĝµν g̃ρν = 0, gµν g̃ρν = 0
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Using DRED and FDH

The crucial step is to split quasi-4-dimensional gluons into
D-component gauge fields and Nǫ = 2ǫ scalar fields, so called ǫ-scalars:

gµν = ĝµν
︸︷︷︸

D−dimensional

+ g̃µν
︸︷︷︸

2ǫ−dimensional

g̃µν g̃µν = 4−D = 2ǫ,

gµν g̃ρν = g̃µρ, ĝµν g̃ρν = 0, gµν g̃ρν = 0

⇒ During the renormalization process the
couplings of the ǫ-scalars must be treated as
independent, resulting in different
renormalization constants and β-functions.
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Using DRED and FDH

gµν
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Using DRED and FDH

gµν

⇓

gs gs ge ge
+

ĝµν g̃µν

dαs

d logµ = β dαe

d logµ = βe
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2-loop scheme dependence in massless QCD

The computation of a 2-loop cross-section is more complicated and
the scheme dependence is not yet well understood:

σ2−loop = σV V
︸︷︷︸

now clear!

+ σV R + σRR
︸ ︷︷ ︸

under investigation



Regularization scheme dependence of two-loop amplitudes

2-loop scheme dependence in massless QCD

2-loop scheme dependence in massless QCD

The computation of a 2-loop cross-section is more complicated and
the scheme dependence is not yet well understood:

σ2−loop = σV V
︸︷︷︸

now clear!

+ σV R + σRR
︸ ︷︷ ︸

under investigation

⇒ Thanks to our computation we have now the
knowledge to convert any two-loop amplitude from one
scheme to another, which was not clear so far.
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2-loop scheme dependence in massless QCD
Infrared singularities of on-shell amplitudes in massless QCD

The IR poles can be subtracted by means of a multiplicative
renormalization factor Z,

|Mn({p}, µ)〉 = lim
ǫ→0

Z−1(ǫ, {p}, µ)|Mn(ǫ, {p})〉
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2-loop scheme dependence in massless QCD
Infrared singularities of on-shell amplitudes in massless QCD

The IR poles can be subtracted by means of a multiplicative
renormalization factor Z,

|Mn({p}, µ)〉 = lim
ǫ→0

Z−1(ǫ, {p}, µ)|Mn(ǫ, {p})〉

Γ({p}, µ) = −Z−1(ǫ, {p}, µ)
d

d logµ
Z(ǫ, {p}, µ)

Γ({p}, µ) =
∑

(i,j)

TiTj

2
γcusp(αs) log

µ2

−sij
+
∑

i

γi(αs)

[Becher and Neubert, 2009]
[Gardi and Magnea, 2009]
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2-loop scheme dependence in massless QCD
IR singularities in different schemes

All the scheme dependence is encoded in the two coefficients γcusp and
γi.

In order to obtain the IR structure in FDH and DRED we have
to compute γcusp and γi in the two different schemes.

The anomalous dimension generalised to

Γ({p}, µ) =
∑

(i,j)

TiTj

2
γcusp(αs, αe) log

µ2

−sij
+
∑

i

γi(αs, αe)
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2-loop scheme dependence in massless QCD
IR singularities in different schemes

All the scheme dependence is encoded in the two coefficients γcusp and
γi.

In order to obtain the IR structure in FDH and DRED we have
to compute γcusp and γi in the two different schemes.

The anomalous dimension generalised to

Γ({p}, µ) =
∑

(i,j)

TiTj

2
γcusp(αs, αe) log

µ2

−sij
+
∑

i

γi(αs, αe)

⇒ How do we calculate γcusp and γi ?
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SCET approach

So far the anomalous dimensions have been extracted by the
computation of the form factor, however due to the universality of the
anomalous dimension, we can calculate γcusp and γi by computing a
”simple” process in SCET

e−

e+ q

q

α2
s
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SCET approach

which factorized as [Becher et al, 2006]

H(Q2, µ2)

J(
L
2 , µ

2 )

J(P 2
, µ 2

)

S(Λ2
s, µ

2)

⇒ F (Q2, L2, P 2) = H(Q2, µ2)J(L2, µ2)J(P 2, µ2)S(Λ2
s, µ

2)

[HV jet function,Becher et al, 2006,2010],[HV soft function,Monni et

al, 2011],[HV form factor,Gonsalves, 1983;Harlander, 2000 ]
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SCET approach

Any function fulfil a similar RG equation,

d

d logµ
H(Q2, µ2) =

[

CF γcusp(αs) log
Q2

µ2
+ γH(αs)

]

H(Q2, µ2)

d

d logµ
J(L2, µ2) =

[

CF γcusp(αs) log
L2

µ2
+ γJ(αs)

]

J(Q2, µ2)

d

d logµ
S(Λ2

s, µ
2) =

[

CF γcusp(αs) log
Λ2
s

µ2
+ γS(αs)

]

S(Λ2
s, µ

2)

and since the final physical result must be independent of µ2

d

d log µ

[

H(Q2, µ2)J(L2, µ2)J(P 2, µ2)S(Λ2
s, µ

2)
]

= 0

⇒ γH + 2γJ + γS = 0 with γH = 2γq
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We have calculated the J and the S functions in FDH (and DRED...).
The form factor in FDH has been calculated by our collaborators
[Gnendiger et al, 2014]
⇒ This allowed us to check that F (Q2, L2, P 2) is scheme
independent.
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As an example we give the result for the γcusp:

γ10 = 4

γ01 = 0

γ11 = 0

γ20 =
(268

9
−

4π2

3

)

CA −
80

9
TRnf−ǫ

32

9
CA

γ02 = 0

Where

γcusp(αs, αe) =
∑

n,m=0

γnm

(αs

4π

)n(αe

4π

)m

Similar for γq and γg.
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We have cross-checked our results in the case of the
Quark-Gluon and the Gluon-Gluon scattering at two
loop order calculated in HV and FDH.
[in CDR, Anastasiou et al, 2001],[in HV and FDH, Bern
et al, 2003]
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Results

We have cross-checked our results in the case of the
Quark-Gluon and the Gluon-Gluon scattering at two
loop order calculated in HV and FDH.
[in CDR, Anastasiou et al, 2001],[in HV and FDH, Bern
et al, 2003]

⇒ The difference between the two schemes is in
complete agreement with our prediction and
also with the results obtained by [Kilgore, 2012].
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We have shown variants of dimensional regularisation and
dimensional reduction.

We stressed that in the case of FDH and DRED it is important
to split the gluon gµν into a D-dimensional component and an
ǫ-dimensional component.
⇒ This splitting introduce a new non physical coupling, which
has to be renormalized differently.

We computed the infrared structure in different schemes up to
two-loop
⇒ This allow one to change from one scheme to another in any
massless virtual QCD computation (up to 2-loop).

The scheme dependence for σV R and σRR are under investigation.
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Conclusion

Thank you!
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