FCC-ee Phenomenology

A. Blondel, J. Ellis, C. Grojean and P. Janot

Eigth FCC-ee Physics Workshop

Paris, October 27-29, 2014

Physics

workshon

Rich physics perspectives for e⁺e⁻ machines

Figure 3. Instantaneous luminosity, in units of 10^{34} cm⁻²s⁻¹, expected at TLEP (full red line), in a configuration with four interaction points operating simultaneously, as a function of the centreof-mass energy. For illustration, the luminosities expected at linear colliders, ILC (blue line) and CLIC (green line), are indicated in the same graph. As explained in the text, the TLEP luminosity at each interaction point would increase significantly if fewer interaction points were considered. The possible TLEP energy upgrade up to 500 GeV, represented by a dashed line, is briefly discussed in section 5.

FCC-ee phenomenology

Rich physics perspectives for e⁺e⁻ machines

Figure 3. Instantaneous luminosity, in units of 10^{34} cm⁻²s⁻¹, expected at TLEP (full red line), in a configuration with four interaction points operating simultaneously, as a function of the centreof-mass energy. For illustration, the luminosities expected at linear colliders, ILC (blue line) and CLIC (green line), are indicated in the same graph. As explained in the text, the TLEP luminosity at each interaction point would increase significantly if fewer interaction points were considered. The possible TLEP energy upgrade up to 500 GeV, represented by a dashed line, is briefly discussed in section 5.

What are the luminosity/energy good for? Higgs boson physics indirect search for new physics top quark physics

2

Christophe Grojean

FCC-ee phenomenology

Rich physics perspectives for FCC machines

-- Higgs physics:

precision studies higher-dimensional operators, composite Higgs rare and exotic decays multiple Higgs production extra Higgs bosons

-- Interface with cosmology:

dark matter
baryogenesis
right-handed/(almost) sterile neutrinos

-- New physics related to EWSB:

WW scattering supersymmetry extra dimensions composite models

-- Rare flavour-changing processes:

Rare H decays Rare Z decays Rare top decays lepton-flavour violation

-- Extensions of the SM: extra vector-like fermions SU(2)_R models leptoquarks

-- QCD:

Perturbation theory Modelling final states

-- EW/SM precision issues

parameter measurements (m_{top}, m_W) higher-order EW corrections triple and quadruple gauge boson (anomalous) couplings top (anomalous) couplings charm/bottom flavor studies

A good share between FCC-ee & FCC-hh

Christophe Grojean

FCC-ee phenomenology

3

Paris, October 28, 2014

	TLEP 240	ILC 250
$\sigma_{ m HZ}$	0.4%	2.5%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm b}\bar{\rm b})$	0.2%	1.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c}\bar{\rm c})$	1.2%	7.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$	1.4%	9.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm WW})$	0.9%	6.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$	0.7%	4.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm ZZ})$	3.1%	19%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$	3.0%	35%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu\mu)$	13%	100%

TLEP = the ultimate Higgs factory

ILC 250

0.25

70,000

3,000

TLEP 240

2,000,000

50,000

10

Christophe Grojean

Total Integrated Luminosity (ab^{-1})

Number of Higgs bosons from $e^+e^- \rightarrow HZ$

Number of Higgs bosons from boson fusion

FCC-ee phenomenology

4

Paris, October 28, 2014

Higgs couplings measurement projections

Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM production or decay modes. The fit assumes generation universality ($\kappa_u \equiv \kappa_t = \kappa_c$, $\kappa_d \equiv \kappa_b = \kappa_s$, and $\kappa_\ell \equiv \kappa_\tau = \kappa_\mu$). The ranges shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers assume (e^- , e^+) polarizations of (-0.8, 0.3) at 250 and 500 GeV and (-0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers assume polarizations of (-0.8, 0.3) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; ({\rm GeV})$	$14,\!000$	14,000	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5-7%	2 - 5%	8.3%	4.4%	3.8%	2.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2 - 4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4 - 7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14 - 15%	7-10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

Rich experimental program of (sub)percent precision

TLEP has a unique subpermil precision in hZZ

(can be used to probe models of EW baryogenesis with a quantum induced first order phase transition!)

H³ @ TLEP

• At LHC (Requires $E_{CM} > 2 m_h$):

Dolan, Englert, Spannowsky

• At ILC (Requires $E_{CM} > 2 m_h + m_Z$):

J. Tian, K. Fujii

H³ @ TLEP

• At LHC (Requires $E_{CM} > 2 m_h$):

Dolan, Englert, Spannowsky

• At ILC (Requires $E_{CM} > 2 m_h + m_Z$):

At TLEP 240 GeV: M. McCullough '14

H³ @ TLEP

Christophe Grojean

FCC-ee phenomenology

6

Paris, October 28, 2014

Open issues for Higgs @ TLEP

 □ Access to light quark couplings via rare decays, e.g. h→ J/Ψ+γ or h → Φ+γ? See Y. Soreq's talk
 □ Access to electron coupling? See D. d'Enterria's talk
 □ Complementarity with EW precision data and Anomalous gauge couplings?

Probing CP-odd couplings?
See A. Falkowski's talk

Probing invisible Higgs decay, e.g. for Dark Matter Higgs portals?

 \square Estimating the sensitivity on flavor-violating Higgs decay, e.g. h \rightarrow $\tau + \mu ?$

Physics with Large statistics

- O 10¹² Z (line-shape, mass & width, probe rare (FCNC) decays) O 10⁸ W (mass)
- O 3x10¹⁰ tau/muon pairs
- O 2x10¹¹ b/c quarks \Rightarrow >20'000 B_s \rightarrow $\tau^{+}\tau^{-}$
- O TLEP@340/500: 10⁶ top pairs (pole mass, probe FCNC decays, top Yukawa)

The benefit of being precise LEP: 10⁶ Z's INF TLEP: 10¹² Z's

TLEP (physics case) '13

Quantity	Physics	Present	Measured	Statistical	Systematic	Datio TI ED/I ED	
		precision	from	uncertainty	uncertainty	KUIIU ILEP/LEP	
$m_{\rm Z}~({\rm keV})$	Input	91187500 ± 2100	Z Line shape scan	5(6)	< 100	20	
$\Gamma_{\rm Z} \ ({\rm keV})$	$\Delta \rho \ (\text{not} \ \Delta \alpha_{\text{had}})$	2495200 ± 2300	Z Line shape scan	8 (10)	< 100	20	
R_ℓ	$lpha_{ m s}, \delta_{ m b}$	20.767 ± 0.025	Z Peak	0.00010(12)	< 0.001	25	
$N_{ u}$	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008 (10)	< 0.004		
N_{ν}	\dots and sterile ν 's	2.92 ± 0.05	$Z\gamma$, 161 GeV	0.0010 (12)	< 0.001		
$R_{ m b}$	$\delta_{ m b}$	0.21629 ± 0.00066	Z Peak	0.000003(4)	< 0.000060	10	
$A_{ m LR}$	$\Delta \rho, \epsilon_3, \Delta \alpha_{\rm had}$	0.1514 ± 0.0022	Z peak, polarized	0.000015(18)	< 0.000015	· 100	
$m_{\rm W} \ ({\rm MeV})$	$\Delta ho \ , \ \epsilon_3, \ \epsilon_2, \ \Delta lpha_{ m had}$	80385 ± 15	WW threshold scan	0.3 (0.4)	< 0.5	3	
$m_{\rm top}~({\rm MeV})$	Input	173200 ± 900	$\rm t\bar{t}$ threshold scan	10 (12)	< 10	100	

Table 9. Selected set of precision measurements at TLEP. The statistical errors have been determined with (i) a one-year scan of the Z resonance with 50% data at the peak, leading to 7×10^{11} Z visible decays, with resonant depolarization of single bunches for energy calibration at O(20min) intervals; (ii) one year at the Z peak with 40% longitudinally-polarized beams and a luminosity reduced to 20% of the nominal luminosity; (iii) a one-year scan of the WW threshold (around 161 GeV), with resonant depolarization of single bunches for energy calibration at O(20min) intervals; (iv) a five-years scan of the tt threshold (around 346 GeV). The statistical errors expected with two detectors instead of four are indicated between brackets. The systematic uncertainties indicated below are only a "first look" estimate and will be revisited in the course of the design study.

Measurements of EW observables improved by ~20÷30 @TLEP/now oblique parameters (S,T,W,Y) uncertainty better by same amount (ILC/now≈2÷3)

Would be important to present a prospective full EW fit! Can we improve the systematics uncertainties?

9

Christophe Grojean

FCC-ee phenomenology

The benefit of being precise

The measurements of today give the input parameters of tomorrow e.g. a precise Higgs mass measurement needed for the Higgs couplings measurements

 $\Delta m_{\rm H}$ = 200 MeV shifts prediction for BR(H \rightarrow VV) by 2%

FCC-ee phenomenology

W mass and New Physics

See S. Heinemeyer's talk

In the SM, W mass is "predicted" in terms of Z mass, G_F , $\alpha_{em...}$

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} \left(1 + \Delta r \right)$$

Christophe Grojean

W mass and New Physics

See S. Heinemeyer's talk

In the SM, W mass is "predicted" in terms of Z mass, G_F, $\alpha_{em...}$ $M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2} G_{\mu}} (1 + \Delta r)$

Any deviation (if the TH uncertainty can be kept under control) tests NP

W mass and New Physics

See S. Heinemeyer's talk

In the SM, W mass is "predicted" in terms of Z mass, G_F, α_{em} ... $M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2} G_{\mu}} (1 + \Delta r)$

Any deviation (if the TH uncertainty can be kept under control) tests NP

Top couplings as a NP discriminator

Figure 9: The heavy dots display the shifts in the left- and right-handed top quark couplings to the Z boson predicted in a variety of models with composite Higgs bosons, from Ref. [31]. The ellipses show the 68% confidence regions for these couplings expected from the LHC [26] and the ILC [30].

Need to estimate the sensitivity in the ttZ couplings @ 350GeV and 500GeV The polarization of the initial beams is a big asset!

12

ILC physics WG '14