

Future Circular Collider Study

FCC-ee Machine Study

Jörg Wenninger CERN Beams Department Operation group - LHC

Acknowledgments to all my FCC-ee colleagues for material and ideas

pp collider (FCC-hh) – 50 TeV* – defines infrastructure.

- ightarrow B = 16 T \Rightarrow 100 km
- ➢ B = 20 T ⇒ 80 km

□ e⁺e⁻ collider (FCC-ee) - 40-175 GeV*

- as intermediate step.

e-p option.

- □ Infrastructure in the Geneva area.
- International collaboration is taking shape.
 - First ICB at CERN in September

CDR and cost review for the next European Strategy Update in 2018

26/10/2014

- Provide highest possible luminosity for a wide physics program ranging from the Z pole to the $t\bar{t}$ production threshold.
 - ▶ Beam energy range from 45 GeV to 175 GeV.
- Main physics programs / energies (+ scans around central values):
 - > Z (45.5 GeV): Z pole, 'TeraZ' and high precision $M_Z \& \Gamma_Z$,
 - > W (80 GeV): W pair production threshold,
 - H (120 GeV): ZH production threshold ,
 - > $t (175 \text{ GeV}): t\overline{t} \text{ threshold}.$

All energies quoted in this presentation refer to BEAM energies

First layout hh - ee

- FCC-hh relies on a modified LHC as a ~3 TeV injector.
 - Connection to LHC at IR1 (ATLAS) or at IR8 (LHCb).
 - Minimize transfer line length → racetrack-like shape.
- First baseline layout is close to a circular machine with two symmetry planes.

Consider lengths as preliminary !

- Circumference is a rational multiple of LHC: 80, 86.6, <u>93.3</u> or 100 km (¼ LHC).
 - Baseline is the 93.3 km version → average machine radius of 12 km.
- Beam crossings only at the experiments.
- Machine is planar (no kinks), the two rings are side by side.
 - o Good for vertical emittance, polarization.

- At the FCC-ee energies, injection, collimation and dump (extr) systems have reduced space requirements.
 - Injection, collimation and extraction of both rings may fit in 2-3 of the long straight sections.
 - \Rightarrow This layout is only indicative.
 - ⇒ The length of the straights may change!
- The main FCC-ee requirement is an RF system distributed over as many locations as possible.
 - Minimize: energy offsets, orbit offsets in the sextupoles... ⇔ optics perturbations.
 - In this layout roughly one RF station every ~1/5 of the ring. Voltage distribution will be asymmetric (reflect the ring (a)symmetry).
 - Simulations must confirm whether additional **RF** stations are required in the middle of the long arcs (175 GeV !).

93 km option – current baseline

Alignment Location

LHC P1/P8 extraction (avoids Jura limestone)

Alignment Shaft Tools	Alignment Location Geology Intersected by Shafts Shaft Depths								WASSEL 1	
Choose alignment option	+			Shaft De	epth (m)		Geology (n		Mars 622	2
93km quasi-circular 🔻	12	Shaft	Actual	Min	Mean Ma	X Moraine	Molasse			
Tunnel depth at centre: 295mASL		2	162	158	168 1	181 0	167			
Gradient Parameters		2	219	211	220 2	230 18	201	12	And the former and	
Azimuth (°)		4	178	169	177 1	182 42	136			
Slope Apple x x/%):		5	195		196 2	221 21	175	Cast of		
Slope Angle X-X(%): 0		6	395	388	405 4	421 26	369	10 20		
Slope Angle y-y(%).		7	385	371	379 3	388 165	220			
CALCULATE		8	238				101		e:	14
Alignment centre		9	148			156 10				
X: 2499641 Y: 1107637		10	290					0	Deeneet eheft	
C Intersection IP 1 IP 2		11	208					0	Deepest shaft	
Angle -15° 21°		12	272	269	275 2	284 69	203	0	close to 400 m	
Depth 121m 106m	esri	Tota	2922	2831	2951 3	076 530	2289	12		
gnment Profile									(not optimized)	
1000m							_	Surface		
900m	A							Lake Molasse		
800m	6 7						_	Calcaire		
								Alignment		
700m		1		10			-	Shaft		
£ ^{600m}		9		1			12			
ರ್ ^{500m} 1 3			2			11				
É 400m		V			N		- Par	1		
300m				-L	L'					
200m I							l			
100-										
Toom										
Om Okm 10km	20km 30km 40km 50km Distance along ring clockwise from CEF	^{60km} RN (km)		70km		80km	90km			
logy Intersected by Tunnel										
	91%							9%		
									0	

Synchrotron radiation power

- □ The maximum synchrotron radiation (SR) power P_{SR} is set to <u>50</u> <u>MW per beam</u> – design choice \Leftrightarrow power dissipation.
 - \Rightarrow defines the maximum beam current at each energy.

Note that a margin of a few % is required for losses in straight sections.

- Reference set from last February (FCC kick-off) revision upcoming to remove inconsistency and to match to 93.3 km layout.
 - For ex: large number of bunches requires 2 rings and large crossing angle not correctly reflected in parameters.

Parameter	Z	W	Н	t	LEP2
E (GeV)	45	80	120	175	104
I (mA)	1400	152	30	7	4
No. bunches	16'700	4'490	1'330	98	4
β* _{x/y} (mm)	500 / 1	500 / 1	500 / 1	1000 / 1	1500 / 50
ε _x (nm)	29	3.3	1	2	30-50
ε _y (pm)	60	7	2	2	~250
ξ _y	0.03	0.06	0.09	0.09	0.07
L (10 ³⁴ cm ⁻² s ⁻¹)	28	12	<u>6.0</u>	1.8	0.012

The actual intensities and luminosities will be lowered due to SR losses around the experimental regions (change < 10%).</p>

8th FCC-ee Physics Workshop - Paris - J. Wenninger

26/10/2014

Beam-beam parameter

 $\Delta \mathbf{y}'$ (µrad)

20

-20

- The beam-beam parameter ξ measures the strength of the field sensed by the particles due to the counterrotating bunch.
- Beam-beam parameter limits are empirically scaled from LEP data (also 4 IPs).

Beam-beam simulations

Beamstrahlung

□ Hard photon emission at the IPs, '*Beamstrahlung*', can become a lifetime / performance limit for large bunch populations (*N*), small hor. beam size (σ_x) and short bunches (σ_s).

$$au_{bs} \propto \frac{\rho^{3/2} \sqrt{\eta}}{\sigma_s} \exp(A\eta\rho) \qquad \frac{1}{\rho} \approx \frac{Nr_e}{\gamma \sigma_x \sigma_s}$$

 ρ : mean bending radius at the IP (in the field of the opposing bunch)

Lifetime expression by V. Telnov

D To ensure an acceptable lifetime, $\rho \times \eta$ must be sufficiently large.

• Flat beams (large σ_x) !

 η : ring energy acceptance

- Bunch length !
- Large momentum acceptance of the lattice: **1.5 2% required**.
 - LEP had < 1% acceptance, SuperKEKB ~ 1-1.5%.

Beamstrahlung lifetime

Reasonable agreement between tracking and analytical estimates.

26/10/2014

Emittances

- FCC-ee is a very large machine, scaling of achievable emittances (mainly vertical) is not straightforward.
 - Coupling, spurious vertical dispersion.
- Low emittances tend to be more difficult to achieve in colliders as compared to light sources or damping rings – beam-beam !

□ FCC-ee parameters:

- \circ ε_y/ε_x ≥ 0.001 ,
- ε_v ≥ ≈2 pm

with a ring ~50-100 larger than a typical light source.

Very challenging target for a ring of that size!

Arc lattice (circular machine)

10

6 sin∙km.

26/10/2014

Lattice options for lower energies

IR parameters

At the IP the smallest possible β* must be obtained – see L formula. The target for β*_y is set to <u>1 mm</u>. Such a small β* requires a local chromaticity correction scheme.

- Design taken over from linear collider IR. But with the complexity that the beam does not pass the IR only once.
- Local chromaticity correction must be matched to global correction in the arc sections.
- \circ Very large optical functions \rightarrow high sensitivity to aberrations.
- Requires bending magnets close to the IP \rightarrow SR fan !
- □ The distance between IP and front-face of the first quadrupole is currently set to L* ≥ 2 m (SuperKEKB ~1 m).
 - Acceptance for experiments, luminosity measurement. To be studied.

The combination of very small β_y^* and large acceptance is a challenge for the optics and MDI design !

Dynamic Aperture

Example from Y. Cai (HF2014) for CEPC @ 120 GeV

IR optical layout

- Ultra-low β* requires local correction of chromatic effects (copied from Linear Colliders).
 - Requires dipoles in the 'straight section' → additional SR.
 - Lengthens the IR very significantly.
- Example on this slide was designed by BINP with L* = 2m.
 - Long sections are needed for the chromatic corrections.
- The problem of dynamic aperture is coming from high order aberrations that are difficult to compensate.
 - An when compensated in an ideal machine, how robust it is to machine errors.

□ Tunnel transverse width of both FCC-ee designs ~3-4 m.

IR layouts

- Additional length is required to bend beams back, plus room for RF.
- Synchrotron rad. power per IP: CERN 140 kW, BINP 1400 kW.
 - Optimum between length and power loss to be identified !
 - 93 km racetrack IR straights of 1400 m may be too short for ee !

IR challenges and next steps

- □ Find an optics solution with smallest possible β^* that satisfies the requirements for momentum aperture of 1.5-2%.
 - We will soon build a larger β^* (~20 mm) optics without local chromatic cor. to study how far one can push a global scheme.
- Define a viable crossing angle and L* (final focus SC magnet design – 2 apertures, MDI).
- Optimize the bending strength and dipole arrangement to obtain tolerable SR loads on vacuum chambers, SC magnets bores... while preserving performance.
 - Design masks and local absorbers.
- MDI integration.
- Study robustness of optics to machine errors (alignment, magnetic fields, fringe fields etc), effect of the experimental solenoids.

Iterate !!!

SuperKEKB IR

IR layout of SuperKEKB – the only straight thing is the tunnel.

❑ 'Wiggling' of the beam paths ⇔ local chromatic corrections.

- The last focusing quadrupoles are installed deep inside the BELLE detector.
 - Shielded from the BELLE solenoidal field with antisolenoids.

SC RF System

RF system requirements are characterized by two different regimes.

- High gradients for H and $t\bar{t}$ up to ~11 GV.
- High beam loading with currents of ~1.5 A at the Z pole.
- RF experts are not convinced that one can achieve both goals with the same RF system – part of the study !
- □ The RF system must be distributed over the ring to minimize the energy excursions (~4.5% energy loss @ 175 GeV).
 - Optics errors driven by energy offsets, effect on η .
- □ Aiming for SC RF cavities with gradients of ~20 MV/m.
- RF frequency most likely 400 MHz (current baseline 800 MHz).
 - $_{\odot}$ Crab waist & large crossing angles favor lower frequency \rightarrow 400 MHz.
- Conversion efficiency (wall plug to RF power) is critical. Aiming for over 75%!
 - Key item for the FCC-ee power budget.~65% was achieved for LEP2.

Polarization

Two main interests for polarization:

□ Accurate energy calibration using resonant depolarization \Rightarrow measurement of M_z, Γ_z , M_W

- \circ Nice feature of circular machines, δM_Z , $\delta \Gamma_Z \sim 0.1 \text{ MeV}$
- Physics with longitudinally polarized beams.
 - Transverse polarization must be rotated in the longitudinal plane using spin rotators (see e.g. HERA).

Scaling the LEP observations :

polarization expected up to the WW threshold !

Integer spin resonances are spaced by 440 MeV:

energy spread should remain below ~ 60 MeV

Energy [GeV]

Polarization build up

Transverse polarization build-up (Sokolov-Ternov) is very slow at FCC-ee (large bending radius ρ).

- Simulations of polarization with realistic machine errors, solenoids and their compensation should start soon.
 - The solenoid compensation must be integrated into IR or disp. suppressor tricky because of the bends and the crossing angle (precession in the H plane) !!

Energy calibration

- Resonant depolarization has a very high intrinsic accuracy to determine the AVERAGE energy (< 0.1 MeV), but some systematic effects must be taken into account.
 - Example: systematic errors on the spin precession frequency due to vertical misalignments ('rotations due not commute') may not be totally negligible. At LEP this error was at the level of 50-100 KeV.
- Other ideas for calibration are on the market. But achieving a rel. accuracy of ~10⁻⁵ is not trivial ! Lot's of serious studies to perform.
 - Beware of local measurements \rightarrow increased systematic errors!
- The CM energy is given by the LOCAL energy of the beams at IPs. Shifts and uncertainties at the level of O(MeV) are induced by:
 - Cavity alignment, phase and voltage calibration errors tough to monitor !
 - Residual dispersion when beams do not collide head-on perfectly important systematic effect for mono-chromators !

Conclusions

A baseline racetrack-like layout has now been defined to begin integration and infrastructure studies. Details like straight section lengths will require more studies for both ee and hh.

FCC-ee parameter set will be adapted to this layout.

In case you did not know, FCC-ee has loads of challenges, from the layout through the optics to the SC RF system.

The IR is a key item !

- For the moment FCC-ee is essentially a set of target parameters since we do not have a 'working' machine design...
- ...but work on many aspects, in particular the design of the IR, is gaining momentum – in one year from now we will have a clearer idea on the achievable β* and on the (im-)possible IR layouts !

28

Experiments layout

□ With 2 rings that are side by side there are some constraints on the geometry:

- ✓ The path length of both beams must be identical (same energy & v/c) → democratic exchange positions between inner an outer ring.
- ✓ At every crossing the beams exchange roles wrt inside and outside → to close the ring properly the total number of crossings must be an even number.

26/10/2014

β^* evolution

demonstrator for certain optics aspects !

Luminosity lifetime

□ Lifetime from luminosity depends on radiative Bhabha scattering total cross-section $\sigma_{ee} \approx 0.15$ (b) for $\eta=2\% \approx$ independent of energy.

Injection

- Besides the collider ring(s), a booster of the same size (same tunnel) must provide beams for top-up injection.
 - Same size of RF system, but low power (~ MW).
 - Top up frequency ~0.1 Hz.
 - Booster injection energy ~20 GeV.
 - Bypass around the experiments.
- □ Injector complex for e^+ and e^- beams of ~20 GeV.
 - Super-KEKB injector ~ almost suitable (needs boost of energy).

J. Wenninge

Paris

1

8th FCC-ee Physics Workshop

Single ring option

- With a single ring electrostatic fields must be used to separate and recombine the beams.
- Such 'Pretzel' schemes were used at many colliders (CESR, LEP, SppS, Tevatron).
 - The max. number of bunches is much smaller than for 2-ring factories.
 - Constraints on arc optics.
 - Head-on collisions !
- The number of bunches would probably be limited to k~50-500.
 - Luminosity reach for H and $t\bar{t}$ not far from baseline figures, significantly lower luminosity at Z and W.

Not the baseline option for FCC-ee !

