Working Group 4 TopPhysics@FCC-ee

Patrizia Azzi - INFN Padova

Top Physics at FCC-ee

- The strength of the FCC-ee program is to be able to span several centre of mass energies: from Tera-Z to 350GeV and maybe up to a 500GeV option.
- Where/when does top physics come in the program?
 - dedicated run at threshold @350GeV « Mega-Top » because of the IM top pair produced
 - studies with production of single top quarks profiting of the run at 240GeV dedicated to Higgs precision measurement
 - higher energy run @500GeV for ttH
- The organization of the work to be done now is based on the deliverables needed from this physics program for the 2015 Spring deadline (which is very tight!):
 - planning physics presentations for FCC-ee 9th workshop in Pisa Feb 2015

Production and decay

- analysis driven by production and decays modes
 - at threshold pair production dominates
 - at lower energies can enhance also the single production wrt to background

- ~100% BR in Wb
- final states classified on the basis of the W decay

Deliverables

- There are few clear high priority topics: either because we know they are important, either to assess their real potential with appropriate studies.
 - (scarce) Available literature comes from ILC and (old) Tesla studies.
- Shopping list (see also https://tlep.web.cern.ch/content/wg4-exp):
 - top mass measurement at threshold @350GeV: « the measurement »
 - need to compare with current ILC expectation. some work being done (see later)
 - need to have specific FCC-ee complete analysis (i.e. with detector simulation)
 - as a byproduct of these analyses would come the precise determination of other precision variables: width, Yt, etc
 - top rare decays and anomalous couplings (240 or 350): the real fast way to find BSM physics.
 - need to explicitly evaluate the potential. some work being done here (see later)
 - in particular use of single top final states profiting of higher luminosity run at 240 GeV
 - the case for 500 GeV run:
 - direct extraction of Ytt from ttH signal
 - any other BSM signal to look for?

Threshold scan - Ultimate sensitivity

F. Simon @Top2014

Effects of some parameters are correlated;
 dependence on Yukawa coupling rather weak precise external α_s helps

The cross-section around the threshold is affected by several properties of the top quark and by QCD

- Top mass, width, Yukawa coupling
- · Strong coupling constant

Here: Extract mass and αs

Perspectives on precision mass measurement

Side Remark - Threshold Scan at LCs and FCCee

F. Simon @Top2014

- Slight differences in statistics due to cross section, changes in sensitivity due to steepness of threshold turn-on
- ▶ For 100 fb-1, no polarization, 1D mass fit:

- Somewhat different luminosity spectra for different machines:
 - · no beamstrahlung tail in storage ring
 - sharper main peak at ILC, broader at CLIC

ϥ

Frank Simon (fsimon@mpp.mpg.de)

Prospects on rare decays

B. Fuks @Top2014

❖ At a center-of-mass energy of 240 GeV

very preliminary results (IPM group) cross checks in progress: also hadronic channel being studied (Rome)

- \uparrow Inclusive approach via $t\bar{t}$ production cross section
 - At a center-of-mass energy of 350 GeV
 - * Five-year scan of the top-antitop threshold

[TLEP Design Working Group (JHEP'14)]			
	$m_{ m top}$	$\Gamma_{ m top}$	$\lambda_{ ext{top}}$
TLEP	10 MeV	11 MeV	13%
ILC	31 MeV	34 MeV	40%

- ♣ Indirect constraints from the top width
 - ★ Constraining the magnitude of the rare decay modes
- Plan from the pheno-side to use a complete approach with dim-6 operators and 4 fermion interactions
- Plan from the exp-side: use a Delphes simulation to include the charm-tagging option to evaluate the potential for the Ztc case and to be used for the detector design

Top Group planning - Phase 00

- Before dealing with the group structure I started from collecting the interest by few experts to set the basis of the planning.
 - However after a very enthusiastic initial phase now the interference with other projects schedule is hindering a stronger participation from the same people.
- Current expression of interest:
 - Mass reconstruction: Frank Simon (exp) excellent example of synergy with the ILC effort.
 - Rare decays:
 - Barbara Mele(th), with S. Biswas (th) and F. Margaroli(exp)
 - Benjamin Fuks(th), already participating to efforts in top physics at CMS and FCC-hh
 - IPM Teheran (exp) group already doing similar analyses in CMS
 - Single Top: some interest from previous LEP experts M.Antonelli (exp) retrieved for us some specific MC generator code

Top Group planning - Phase I

- As it is natural, in the course of this initial work lots of new details for the analysis and new topics have come up.
- Currently suggesting the following WG structure with openings to fill:
 - 2 WG conveners: looking for a co-convener. would like someone with some expertise, enthusiast and energetic, either experimentalist or phenomenologist to join me in this adventure.
 - 3 subgroups that will need one(or two) convener each:
 - Cross Section & Mass: precision measurements in single and pair production
 - Properties & NP: couplings, rare decays, FCNC, differential distributions
 - High Energy: the case for 500GeV
- Planning also to move from specific discussion with specific groups, to calling « Top Group meetings » on a need-to basis.

Other areas of work/contacts

- Inside the bigger scheme of the FCC-ee physics community we should not forget that we need also people that can cover the following roles:
- Theory and Generator responsible: for signal generation and systematics:
 - fully exploit the synergy with the studies done for ILC/CLIC
 - Contact toward the Theory section of FCCee organization
- Contact with SM and BSM Physics Group: for backgrounds and models
- <u>Contact with Machine interface Group for energy measurement for mass measurement Contact with FCCee Offline Group:</u> for development of simulation and reconstruction tools:
 - profit from previous tools developed for Snowmass (Delphes)
 - Reconstruction issues (and detector requirements) for Top physics are not « extreme » and they overlap largely with the Higgs. (similar backgrounds and energy scale)
 - One need in common that is fairly 'new' compared to previous studies would be the development of a strong c-tagging (would make the difference for single-top as well)
 - currently preparing (IMP Teheran+Roma) a ILD-inspired Delphes card to be used for these studies. If anyone is interested in helping out or validating it please contact me.

What next

- Some real work in progress but need to switch gears.
- Noticed way more interest for FCNC topics and very little for precision measurements. Interesting.
- The synergy with ILC is particular as the physics case is very similar. Can we strengthen and profit from this?
- Continuing scouting of interested people:
 - with personal contact with experimentalists
 - profiting of synergy with theorists/phenomenologists
 - profiting of synergy with activities with FCC-hh as top expert in general are involved in both
- please nominate yourself or colleagues for the positions in the Top Working Group!

