Tests of Non-Unitarity in Leptonic Mixing at the FCC-ee

Oliver Fischer University Basel

with S. Antusch

arXiv:1407.6607 JHEP 1410 (2014) 096

FCC-ee Physics workshop #8 Paris, 27-29 October 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation & Outline

- Existence of massive neutral leptons (ν_R) is well motivated
- Affect many precision observables, in particular the EWPO

- Higgs boson discovery increases sensitivity of EWPO
- This talk:
 - (i) Assumption: New physics at a scale $\Lambda > M_Z$
 - (ii) Employ: Minimal Unitarity Violating scheme
 - (iii) Present bounds
 - (iv) Future sensitivities at the FCC-ee

Non-Unitarity of the Leptonic Mixing Matrix

Presence of massive right-handed neutrinos (ν_R):

$$\mathscr{L}_{\text{Theory}} = \mathscr{L}_{\text{SM}} + \mathscr{L}_{\nu_{R}}$$

Leads to mixing of the neutral states (ν_L , ν_R):

$$\mathcal{U} = \left(egin{array}{ccc} \left(& \mathcal{N} &
ight) & \ldots & \ & & \ddots & \ & & \vdots & & \ddots \end{array}
ight) \qquad ext{with} \qquad \mathcal{U}^{\dagger}\mathcal{U} = 1$$

- ► N ~ Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
- PMNS as submatrix in general not unitary

Minimal Unitarity Violation (MUV) Scheme

- For the formalism, see Backup I.
- Modification of the weak currents with neutrinos:

$$\left(J^{\mu,\pm}\right)_{\alpha i} = \ell_{\alpha} \gamma^{\mu} \nu_{i} \, \mathsf{N}_{\alpha i} \,, \qquad \left(J^{\mu,0}\right)_{ij} = \nu_{i} \gamma^{\mu} \nu_{j} \, \left(\mathsf{N}^{\dagger}\mathsf{N}\right)_{ii}$$

- Corresponding observables are $\propto NN^{\dagger} \sim N^{\dagger}N$
- Parametrisation: $(NN^{\dagger})_{\alpha\beta} = \mathbb{1}_{\alpha\beta} + \varepsilon_{\alpha\beta}$

Theory Prediction for the EWPO

• Highest precision: M_Z , $\alpha(M_Z)$, G_F .

- Muon decay $\propto (NN^{\dagger})_{ee} (NN^{\dagger})_{\mu\mu}$
- Fermi constant $G_F \neq$ muon decay constant G_{μ} .
- Tree-level relation: $G_F = \frac{G_{\mu}}{\sqrt{(NN^{\dagger})_{ee}(NN^{\dagger})_{\mu\mu}}} = \frac{\alpha \pi}{\sqrt{2}s_W^2 c_W^2 m_Z^2}$

 $N_{\mu i}$

 N_{ej}

 $\bar{\nu}$

μ

Analogous: Observables involving weak decays.

Global Fit to Precision Data

- MUV theory prediction for 34 precision observables, see Backup II, III, IV, V.
- MCMC fit of six parameters $\varepsilon_{\alpha\beta}$, including correlations.
- Highest posterior density intervals at 90% Bayesian C.L.:

-0.0021	$\leq \varepsilon_{ee} \leq$	-0.0002	$ \varepsilon_{e\mu} $	<	$1.0 imes10^{-5}$
-0.0004	$\leq \varepsilon_{\mu\mu} \leq$	0	$ \varepsilon_{e\tau} $	<	$2.1 imes10^{-3}$
-0.0053	$\leq \varepsilon_{\tau\tau} \leq$	0	$ \varepsilon_{\mu\tau} $	<	$8.0 imes10^{-4}$

Sensitivity to Non-Unitarity from Lepton Universality Tests

- Assumption: SM is true ($\varepsilon \equiv 0 \& O^{exp} = O^{SM}$).
- Blue line: experimental constrains (present).
- Orange line: experimental sensitivity (planned).
 MOLLER, TRIUMF, PSI, NA62, Tau/Charm factories
- ▶ Green line: *W* decays at the FCC-ee.

Sensitivity to Non-Unitarity from EWPOs

- Non-unitarity of the EWPO only.
- Blue lines: theoretical and experimental constrains (present).
- ► Red/Green line: ILC/FCC-ee sensitivity, see Backup VI.

$$\bullet \ \varepsilon_{\alpha\beta} = -y_{\alpha}^* y_{\beta} v_{EW}^2 / (2 \ m_{\nu_R}^2) \Rightarrow \text{Test } m_{\nu_R} \text{ up to } \sim 60 \text{ TeV.}$$

Summary & Conclusions

- Minimal Unitarity Violation (MUV) scheme: Model independent description of non-unitary leptonic mixing.
- Global fit of MUV to precision data:
 - (ia) Hints for non-unitarity at the 2σ level.
 - (ib) What if present hints for non-unitarity are true? (See Backup VII.)
 - (ii) Not conclusive, therefore used as constraints.
- Outlook on FCC-ee impact:
 - (a) Dominant contribution to lepton universality measurements.
 - (b) Particularly powerful probe of Non-Unitarity via EWPO.
 - (c) Test of ν_R masses up to \sim 60 TeV.
 - (d) Full exploitation: Work on theory uncertainties required.

(e) ...

(to be discussed next time).

Backup I - Minimal Unitarity Violation (MUV) Formalism

Lepton number violating mass operator:

$$\delta \mathscr{L}^{d=5} = \frac{1}{2} c_{\alpha\beta}^{d=5} \, (\overline{L^c}_{\alpha} \tilde{\phi}^*) (\tilde{\phi}^{\dagger} \, L_{\beta})$$

Lepton number conserving "Kinetic" operator:

$$\delta \mathscr{L}^{d=6} = c_{\alpha\beta}^{d=6} \, (\overline{L}_{\alpha} \widetilde{\phi}) i \partial (\widetilde{\phi}^{\dagger} L_{\beta})$$

• Mass-mixing & kinetic terms \Rightarrow MUV \neq SM.

► Theory prediction for observable *O*: separating tree- and loop-level:

- Theory prediction at leading order in the MUV parameters: $\delta^{tree}_{\rm MUV}$ is sufficient at the moment.
- The FCC-ee potential requires the $\delta\delta$ terms to be considered.

Backup II - EWPO

Experimental results and SM predictions for the EWPO, and the modification in the MUV scheme, to first order in $\varepsilon_{\alpha\alpha}$.

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell \right]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$\left[R_b ight]_{ m SM} \left(1 + 0.03 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	0.21577(4)	0.21629(66)
$\left[R_{c} \right]_{\mathrm{SM}} \left(1 - 0.06 (\varepsilon_{ee} + \varepsilon_{\mu\mu}) \right)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0} ight]_{ m SM}\left(1-0.25(arepsilon_{ee}+arepsilon_{\mu\mu})-0.27arepsilon_{ au} ight)/{ m nb}$	41.470(15)	41.541(37)
$[R_{inv}]_{\text{SM}}(1+0.75(\varepsilon_{ee}+\varepsilon_{\mu\mu})+0.67\varepsilon_{\tau})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[\Gamma_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_{\mathrm{SM}}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_{\mathrm{SM}}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Backup III - Lepton Universality

MUV prediction:

$$R_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_{\tau} \mu \bar{\nu}_{\mu})}{\Gamma(\tau \to \nu_{\tau} e \bar{\nu}_{e})}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})}$	1.0021(16)
$R^\ell_{ au\mu}$	$rac{\Gamma(au o u_ au e ar u_e)}{\Gamma(\mu o u_\mu e ar u_e)}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_{\tau} \pi)}{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}$	0.9956(31)
$R^W_{e\mu}$	$rac{\Gamma(W ightarrow e ar{ u}_e)}{\Gamma(W ightarrow \mu ar{ u}_\mu)}$	1.0085(93)	$R^{K}_{ au\mu}$	$rac{\Gamma(au o K u_ au)}{\Gamma(K o \mu ar{ u}_\mu)}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W \to \tau \bar{\nu}_{\tau})}{\Gamma(W \to \mu \bar{\nu}_{e})}$	1.032(11)	$R_{ au e}^K$	$\left \begin{array}{c} \frac{\Gamma(\tau \to K \nu_{\tau})}{\Gamma(K \to e \bar{\nu}_e)} \right $	1.018(42)

Backup IV - CKM Unitarity Constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

In the MUV scheme:
$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\rm process}(\varepsilon_{\alpha\alpha})) , \\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} . \end{split}$$
For the kaon decay processes we have:
$$\begin{split} |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to e}|^2 (NN^{\dagger})_{\mu\mu} , \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$
$K_L ightarrow \pi e \nu$	0.2163(6)
$K_L \rightarrow \pi \mu \nu$	0.2166(6)
$K_S ightarrow \pi e u$	0.2155(13)
$K^{\pm} ightarrow \pi e u$	0.2160(11)
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)
Average	0.2163(5)

Processes involving tau leptons:

Process	$f^{ ext{process}}(arepsilon)$	$ V_{us} $
$\frac{B(\tau \rightarrow K \nu)}{B(\tau \rightarrow \pi \nu)}$	$arepsilon_{\mu\mu}$	0.2262(13)
$ au ightarrow K \nu$	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$ au o \ell, au o s$	$0.2arepsilon_{ee} - 0.9arepsilon_{\mu\mu} - 0.2arepsilon_{ au au}$	0.2173(22)

Backup V - Lepton Flavour Violation

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{lphaeta} $
$\mu ightarrow e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$\tau \to {\rm e}\gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	$1.5 \ imes 10^{-8}$	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}ertarepsilon_{ au\mu}ert^2$	1.8×10^{-8}	$arepsilon_{ au\mu} < ext{6.6} imes 10^{-3}$

Present experimental limits at 90% C.L.:

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	10^{-9}	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5}ertarepsilon_{\mu e}ert^2$	10^{-16}	$arepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.

Backup VI - Projected Precision of Future Colliders

Conservatively, we used the expected systematic uncertainty for the analysis. Using the statistical uncertainty yields more progressive sensitivities.

Observable	ILC	FCC-ee	
R_{ℓ}	0.004	0.001	
R _{inv}	0.01	0.002	
R _b	0.0002	0.00002	
M_W [MeV]	2.5	0.5	
$s_{eff}^{2,\ell}$	$1.3 imes 10^{-5}$	$1 imes 10^{-6}$	
σ_h^0 [nb]	0.025	0.0025	
Γ_{ℓ} [MeV]	0.042	0.0042	
$Br(W o \ell \nu)$	0.003	0.0003	
Reference	1310.6708	1308.6176	

Backup VII - Discovery of Non-Unitarity in EWPOs

- x-axis: Improvement factor reducing the experimental uncertainty.
- y-axis: χ² of the SM under the assumption that the present best fit values for ε are true.

• Exclusion of the SM at 5σ : $\chi^2 \simeq 30$ (two parameters).