Higgs physics overview

Markus Klute (MIT), Krisztian Peters (CERN)

29th October 2014, FCC-ee physics workshop

Higgs physics overview

- Latest studies
- Proposed work packages

FCC-ee: ultimate Higgs factory

	TLEP 240
Total Integrated Luminosity (ab ⁻¹)	10
Number of Higgs bosons from $e^+e^- \rightarrow HZ$	2,000,000
Number of Higgs bosons from boson fusion	50,000

TLEP case study

Study based on CMS detector parameters (with a vertex detector similar to ILD)

Model independent coupling measurements with sub-percent level experimental uncertainties

s-channel Higgs production

(d'Enterria, Wojcik, Aleksan)

Unique opportunity to measure electron-Yukawa coupling

Estimated significance reduction (x1/20) due to ISR (0.6) and beam E_{spread} (~0.1). Highly challenging, expect <1% S/B

→ David's talk today

Inclusive measurement with hadronic Z decays

Increase precision with large BR(Z→qq)

(Haddad)

 $\Delta(\sigma_{\mathbf{ZH}})/\sigma_{\mathbf{ZH}} \sim 1.1\%$

Main challenges

- Large diboson backgrounds
- Selection efficiency biases due to combinatorics need to be well understood

Rare/forbidden Higgs decays

Many examples... FCC-ee sensitivities need to be worked out

See also talk on Tuesday by Yotam on $H \rightarrow \rho \gamma$

Experimental studies

Large number of channels to be studied...

- Higgs-strahlung production (ee -> HZ)
 - Inclusive Z -> II measurements
 - Measurement of the ZH cross section
 - Exclusive Z -> II measurements
 - Hadronic Higgs decays (H -> bb, cc, gg, WW, ZZ)
 - Higgs to ZZ (Essential for the total width determination at √s = 240 GeV)
 - Higgs to WW (with lepton decays)
 - Higgs to tau tau
 - Inclusive Z -> qq measurements
 - Measurement of the ZH cross section
 - · Exclusive Z -> qq measurements
 - Four jet final state (H -> bb, cc, gg, WW, ZZ)
 - Six jet final state (H -> WW, ZZ, bb, cc, gg)
 - Jets plus leptons final states (H -> WW,ZZ,mumu)
 - Higgs to tau tau
 - Exclusive Z -> vv measurements
 - Higgs to bb
 - Invisible Higgs decays
 - Exotic Higgs decays (e.g. flavour changing decays)
- Vector boson fusion production
- 3. Exclusive H-> γγ or H -> μμ (ee) production
- 4. Exclusive H -> Zy production
- 5. ee -> Hy production
- ee -> H direct production
- Other production processes
 - SM Higgs: bbH production, tau tau H production
 - 2HDM: hA production, bbH, tau tau production (enhanced with tan beta), and specific decays h -> AA, etc.

Work packages

Main goal of experimental studies

- Assess performance of Higgs measurements @ FCC-ee
- Qualify the detector design

Next steps with a first version of the FCC software framework

- Move existing studies to new framework for testing and feed back to developers
- Use a first detector implementation inside DELPHES. This could be well an ILC detector, also useful for cross checks with ILC studies
- Repeat TLEP case study with FCC framework
- Start detector qualification with well defined benchmark studies and deliverables (work packages)
- Focus first on signal reconstruction

Detector acceptance

CMS detector parameters already close to optimal for Higgs coupling measurements

Study signal selection efficiency as a function of the detector theta coverage

- E.g. H→4l
- Limit on BR(H→invisible)
- ...

Forward electron tagging for eeH production?

Heavy flavour tagging

H→bb,cc,gg discrimination crucial for the FCC-ee physics programme. HF tagging performance is one of the key questions for detector qualification

Flavour tagging (b vs. c)

- Decay length (IP parameter resolution)
- Mass
- Number of lepton tracks
- ...

Need to study both algorithm and detector design. The ILC detectors are a good starting point

→ See presentation by Aidan

Tracking momentum resolution

Recoil mass measurement in Z(II)H is a key aspect of the FCC-ee Higgs physics programme

- Gives common normalisation in H coupling measurements
- Most sensitive channel is Z→ μμ

Limiting aspects for measurement accuracy

- Track momentum resolution
- Beam energy spread / initial state radiation
- Z decay width

- 1. Study $Z(\mu\mu)H$ cross section and mH measurements as a function of the muon momentum resolution (start with perfect resolution and apply smearing)
- 2. Similar study for BR(H→µµ) measurement

Jet energy determination

Distinguish two cases: events without or with significant missing mass

- Use jet directions and momentum conservation for jet energy determination
- Use Calo/PFlow
- 1. Study hadronic Higgs decay (H→bb, ZZ,...) measurements in Z(II)H as a function of the jet angular resolution (CAL granularity)
- 2. Study cross section (or Γ_H) measurement accuracy of $vvH(\rightarrow bb)$ as function of jet energy resolution (calo)

EM resolution

Intrinsic calo resolution not the only aspect, bremsstrahlung (~ ID material) and its measurement very important too

- 1. Quantify Z(ee)H cross section and BR(H $\rightarrow \gamma\gamma$) measurement dependence on Ecal resolution and ID material budget
- 2. Study brem recovery algorithms

Conclusions

Started to define benchmark processes for detector qualification

 Your feedback is highly welcome! Let us know if you would like to propose further work packages

The FCC software framework is a crucial help towards detector qualification

- Repeat Higgs coupling measurements of TLEP study
- Compare to existing studies with ILC parameters
- Studies can then easily be repeated for different detector configurations and resolution/efficiency studies