Outline	OO	Counting loss and correction	Summary O

Precise luminosity measurement in the presence of beam-beam effects at an e⁺e⁻ collider A simulation study

S. Lukić On behalf of the HEP Group Vinča Belgrade

Vinča Institute of Nuclear Sciences, University of Belgrade

FCC-ee Physics Workshop TLEP8 27-29 October 2014 LPNHE, Paris

Outline	Introduction	Counting loss and correction	Summary
	00	0000	
			,

2 Counting loss and correction

Outline	Introduction	Counting loss and correction	Summary
	00	0000	0

Introduction

Outline

Introduction

Counting loss and correction

Summary

Luminosity measurement at a e⁺e⁻ collider

Principle

- Bhabha scattering as the gauge process $L = \frac{N_{Bhabha}}{\sigma_{Bhabha}}$
 - High final energies
 - Small angles $\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} \propto \theta^{-3}$
 - High cross section
 - Well known process precise calculation
- Precision at LEP better than 0.6 permille

Instrumentation

- Very forward luminosity calorimeter
 - W-semiconductor layers
 - Very compact
 - Fine segmentation
 - Limited angular range (ca. 2° 5°)

FCAL Luminosity calorimeter concept for Linear Colliders

- High energy and charge density at future colliders
 - Beamstrahlung causes boost of the events.
 - 2D luminosity spectrum $\mathcal{L}(E_{CM},\beta)$ or $\mathcal{L}(E_1,E_2)$

The most extreme case among current e^+e^- collider projects: $\mathcal{L}(E_{CM},\beta)$ at a 3 TeV CLIC (left)

Outline	Introduction	Counting loss and correction	Summary
	00	0000	0

Counting loss and correction

Outline

Introduction

Counting loss and correction ●○○○ Summary

Boost and the counting loss

In practice, the luminosity figure is obtained as,

$$L = \frac{N(\Xi(\Omega_{1,2}^{lab}, E_{1,2}^{lab}))}{\sigma(Z(\Omega_{1,2}^{evt}, E_{1,2}^{evt}))}$$

However:

- Boost of the Bhabha event leads to acollinearity of the final angles and to counting loss
- First studied by C. Rimbault, P. Bambade, K. Mönig and D. Schulte in 2007
- A crucial issue is to match the selection criteria in the lab vs. the event frame in a **data-driven** way. If this is done by the bunch-crossing simulation, problem of large uncertainties of the beam parameters

Distribution of polar angles of the final Bhabha particles in the lab frame at a 3 TeV CLIC. Selected for angular range in the collision frame. Outline

Introduction

Counting loss and correction ○●○○ Sum mary

Correction of the counting loss

- Kinematic properties (E_{CM}, β) of the <u>collision frame</u> of the Bhabha scattering accesible in the experiment
- Effective acceptance ε_{eff} of the luminosity calorimeter can be corrected using β deduced from final angles as long as β < β* (i.e. ε_{eff} > 0)

$$w(\beta) = \frac{\int_{\alpha}^{\theta_{\max}} \frac{\mathrm{d}\sigma}{\mathrm{d}\theta} \,\mathrm{d}\theta}{\int_{\alpha}^{\theta_{\min}} \frac{\mathrm{d}\sigma}{\mathrm{d}\theta} \,\mathrm{d}\theta}$$

Schematic of the mechanism of the counting loss and the proposed correction.

Dutline	Introduction	Counting loss and correction	Sum mary
	00	○○●○	O
Results			

- Method tested on MC particles. Detector effects approximated as:
 - Particles collinear to 5 mrad (Molière radius) lumped together
 - MC 4-momenta smeared for energy and angular resolutions
- Correction successful to better than 1 permille above ca. 70 80% of the nominal CM energy (the exact E_{CM} limit depends on the calorimeter angular range)
- Most events below the E_{CM} limit have $\beta > \beta^*$

Correction of the effective acceptance loss due to the event boost at a 3 TeV CLIC

Outline	Introduction	Counting loss and correction	Summary
		0000	
Cross section			

The proposed correction allows unambiguous matching of the selection criteria for the cross-section calculation

Reminder:
$$L = \frac{N(\Xi(\Omega_{1,2}^{lab}, E_{1,2}^{lab}))}{\sigma(Z(\Omega_{1,2}^{coll}, E_{1,2}^{coll}))}$$

Required cuts

- Angular cuts on the final particles are made in the collision frame
 - Straightforward in the generator
- Cut on the CM energy of the event -
 - Requires good criteria (i.e. collinearity cut for the FSR) which final particles participate in the reconstruction of the event ultimately to be answered by full detector simulation

Outline	Introduction	Counting loss and correction	Summary
	00	0000	0

Summary

Summary	

- Event boost due to Beamstrahlung causes a systematic counting loss in luminosity measurement at LC
- Challenge: correct experimental acceptance loss in a **data-driven** manner so that the corresponding **cross-section can be integrated** within well-defined cuts
- \bullet Correction of the luminosity spectrum using β determined from final Bhabha particle angles
 - Absolute luminosity in the peak with permille precision
 - Experimental cuts linked to the cuts for the cross-section calculation in the most direct way so far
 - Limitation to the upper part of the luminosity spectrum