charmless B decays

Ignacio Bediaga.
Centro Brasileiro de Pesquisas Físicas-Rio de Janeiro- Brazil.
Collaborators: Tobias Frederico (ITA) and Odilon Lourenço (UFSCar)
Lishep 2015 2-9 August 2015 - Manaus - Amazonas-Brazil

Centerad question about
 C. violation

CP violation and the CPT Theorem

Valid to any Lorentz invariant theory where the observables are represented for hermitian operators. (Greengerg PRL89 (2002) 231602).

CPT conservation \rightarrow same lifetime for both, particle and anti-particle.

Sum of the partial width from particle and anti-particle
must be the same:
$\Gamma\left(\mathrm{M}^{+} \rightarrow \mathrm{f}^{+}{ }_{1}\right)+\ldots . .+\Gamma\left(\mathrm{M}^{+} \rightarrow \mathrm{f}^{+}{ }_{\mathrm{n}}\right)=\Gamma\left(\mathrm{M}^{-} \rightarrow \mathrm{f}^{-}{ }_{1}\right)+\ldots \ldots .+\Gamma\left(\mathrm{M}^{-} \rightarrow \mathrm{f}^{-}{ }_{\mathrm{n}}\right)$

QP violation \rightarrow presence of weak phase

CabbiboKobayashiMaskawa Matrix

Cabibbo Kobayashi-Maskawa:
4 parameters, 3 angles and one phase.

High probability

Middle probability

Low probability

$|$| d | s | b | |
| :---: | :---: | :---: | :---: |
| $V_{u d}$ | $V_{u s}$ | $V_{u b}$ | u |
| $V_{c d}$ | $V_{c s}$ | $V_{c b}$ | c |
| $V_{\text {td }}$ | $V_{\text {ts }}$ | $V_{\text {tb }}$ | t |

Interferometer to observe CP in neutral

 particles.

$$
\mathrm{B}_{\mathrm{s}}{ }^{0} \rightleftharpoons \overline{\mathrm{~B}}_{\mathrm{s}}{ }^{0}
$$

If M^{0} e M^{0} decays in a same final state (P.ex. $\Pi^{+}{ }_{\Pi}{ }^{-}$ou $\mathrm{K}^{+} \mathrm{K}^{-}$):

Master Equation

$<\alpha|\mathrm{T}(\mathrm{t})| \mathrm{P}^{0}>=\mathrm{e}^{-(\mathrm{\Gamma} / 2-\mathrm{i} \Delta \mathrm{mt})}\left[\mathrm{T}\left(\mathrm{P}^{0} \rightarrow \alpha\right) \cos \Delta \mathrm{mt}+\mathrm{q} / \mathrm{p} \mathrm{T}\left(\overline{\mathrm{P}}^{0} \rightarrow \alpha\right) \sin \Delta \mathrm{mt}\right]$ $<\alpha|\mathrm{T}(\mathrm{t})| \overline{\mathrm{P}}^{0}>=\mathrm{e}^{-(\Gamma / 2-i \Delta \mathrm{mt})}\left[\mathrm{T}\left(\overline{\mathrm{P}}^{0} \rightarrow \alpha\right) \cos \Delta \mathrm{mt}+\mathrm{p} / \mathrm{qT}\left(\mathrm{P}^{0} \rightarrow \bar{\alpha}\right) \sin \Delta \mathrm{mt}\right]$

$$
\text { If } \mathbf{q} / \mathbf{p} \neq \mathbf{p} / q \rightarrow C P \text { violation. }
$$

$\Delta \mathrm{m}$ oscillation parameter

STOMO distance (1) asyinitety:

Direct Q'P violation charged particles:

Different disintegration behavior from particle and anti-particle

Two contribution to a same final state.
With different strong phases (δ_{1} and δ_{2}) and weak phases (ϕ_{1} and ϕ_{2}).

$$
\begin{aligned}
& \langle f| T|i\rangle=A_{1} e^{i\left(\delta_{1}+\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}+\phi_{2}\right)} \\
& \langle\bar{f}| T|\bar{i}\rangle=A_{1} e^{i\left(\delta_{1}-\phi_{1}+\theta\right)}+A_{2} e^{i\left(\delta_{2}-\phi_{2}+\theta\right)}
\end{aligned}
$$

CP Violation:
Branco, Lavoura e Silva

$$
\left.\Gamma(\mathrm{i} \rightarrow \mathrm{f})-\Gamma \overline{(\mathrm{i} \rightarrow \mathrm{f})}=|\langle f| T| i\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{i}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)
$$

So CP Violation needs: different strong δ_{1} and δ_{2} and weak phases ϕ_{1} and ϕ_{2}.

Short distance: BSS Model Bander Silverman and Soni PRL 43 (1979) 242

CPT Invariance

-CPT invariance \Rightarrow Same lifetime and same mass to particle and anti-particle.

$$
\begin{aligned}
& \text { Lifetime } \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }} \\
& \Gamma_{\text {total }}= \Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+. . \\
& \bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+.
\end{aligned}
$$

$\rightarrow \not \mathrm{P}$ violation $\Rightarrow \Gamma_{1}>\bar{\Gamma}_{1}$.

* For CPT conservation:
$\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \ldots \ldots<\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+$
In a exact proportion.
* We have to include final state interaction in the CP violation calculation.

Direct QP violation :

Different disintegration behavior from particle and anti-particle

Two contribution to a same final state.
With different strong, δ_{1} and δ_{2} and weak phases, ϕ_{1} and ϕ_{2}.

Branco, Lavoura e Silva
$\left.\Gamma(\mathrm{i} \rightarrow \mathrm{f})-\Gamma \overline{(\mathrm{i} \rightarrow \mathrm{f})}=|\langle f| T| i\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{i}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)$
CP Violation needs: different strong δ_{1} and δ_{2} and weak phases ϕ_{1} and ϕ_{2}.

Short distance: BSS Model Bander Silverman and Soni PRL 43 (1979) 242 The weak coming from CKM and the strong from Penguin with time-like gluon.

The common believe: Ikaros Bigi hep-ph 1503-07719

' The CKM suppressed weak decays for beauty hadrons produce FS with more hadrons than two, three \& four ones. Therefore one expects that CPT invariance is not a "practical" tool in beauty decays '

For ex. the $B^{+} \rightarrow K^{+} \Pi^{+} \Pi^{`}$ can have many B decay channels with accessible FSI
$\rightarrow B^{+}->K^{0} \Pi^{+}$
$\rightarrow B^{+}->K^{+}{ }_{\Pi}{ }^{0}$
$\rightarrow B^{+}->K^{+} \eta$
$\rightarrow B^{+}->K^{0} \Pi^{+} \Pi^{0}$
$\rightarrow B^{+}->K^{+} K^{0} K^{0}$
$\rightarrow B^{+}->K^{+} K^{+} K$
$\rightarrow B^{+}->K^{0} \Pi^{+} \eta^{0}$
$\rightarrow B^{+}->K^{+} \Pi^{0} \eta^{0}$

- Plus 4 bodys

Has really hadronic interaction many degrees of freedom ???

$B^{+} \rightarrow K^{+} \Pi^{+} \Pi^{`}$ events distribution.

PHYSICAL REVIEW D 90, 112004 (2014)
Measurements of $\boldsymbol{C P}$ violation in the three-body phase space of charmless $B^{ \pm}$decays
R. Aaij et al." (LHCb Collaboration)

\rightarrow More than 90% of the events has $M^{2}{ }_{K+\pi-}$ e $M^{2}{ }_{H+\pi-}<2.5 \mathrm{GeV}^{2}$ supporting the $2+1$ first order approximation.
*2+1 approximation \rightarrow use elements of elastic scattering

Elastic scattering: $\boldsymbol{K}^{+} \boldsymbol{\Pi}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Pi}$

Inelasticity: $\eta=1 \Rightarrow 100 \%$ of hh going hh, $\eta=0 \Rightarrow 0 \%$ going to other final states.

Argand circle.

S-wave

No deviation of the unitary circle to P -wave till 1.6 GeV . S-wave is also in the unitary circle, if one exclude $\mathrm{I}=3 / 2$ contribution.

Elastic scattering $\quad \Pi^{+} \Pi^{-} \rightarrow \Pi^{+} \Pi^{\boldsymbol{}}$.

CERN-Munich collaboration $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$(1973)
 Nuclear Physics B64 (1973) 134-162.1

S-wave

P-wa, ve

D-wave

FIG. 27. Modulus of the $\pi \pi \rightarrow \bar{K} K$ scattering amplitude $\left\lvert\, \begin{array}{ll}T(\pi \pi & \bar{K} K) \mid \text { from solution I(b). }\end{array}\right.$

Strong coupling:

$$
\boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}
$$

Fig. 6. Argand diagrams ($\operatorname{Im} T_{l}^{J}$ versus $\operatorname{Re} T_{l}^{J}$) for the partial wave amplitudes from the energydependent fit. Numbers indicate the $\pi \pi$ energy.

Big deviation of the unitary circle in the S wave between 1 to 1.5 GeV .

$B^{+} \rightarrow K^{+} \Pi^{+} \Pi^{`}$ events distribution.

PHYSICAL REVIEW D 90, 112004 (2014)
Measurements of $\boldsymbol{C P}$ violation in the three-body phase space of charmless $B^{ \pm}$decays
R. Aaij et al." (LHCb Collaboration)

\rightarrow More than 90% of the events has $M^{2}{ }_{K+\pi-}$ e $M^{2}{ }_{H+\pi-}<2.5 \mathrm{GeV}^{2}$ supporting the $2+1$ first order approximation.
*2+1 approximation \rightarrow use elements of elastic scattering

Long distance CP asymmerty:

-

interfierence
Sand PWave intur

CP violation in $B^{-} \rightarrow$ II $^{\mp} \underline{I I}^{+} \underline{\underline{I}}^{-}$decay.

Measurements of $\boldsymbol{C P}$ violation in the three-body phase

 space of charmless $B^{ \pm}$decaysR. Aaij et al. ${ }^{*}$ (LHCb Collaboration)

Division related with angular distribution of vector resonances.

CP asymmetry from S and P wave interference in same hadronic final state.

I.B., G. Guerrer, J. Miranda -Phys.Rev. D76 (2007) 073011
I.B., I.I. Bigi, A. Gomes, G. Guerrer, J. Miranda and A.C. Dos Reis-Phys. Rev. D80, 096006 (2009)
I.B., I.I. Bigi, A. Gomes, J. Miranda, J. Otalora, A.C. Dos Reis and A. Veiga- Phys. Rev. D86, 036005 (2012)

Simplest amplitude of $B{ }^{\mp} \rightarrow \Pi^{\mp} \Pi^{+} \Pi^{-}$to low $\Pi^{+} \Pi^{-}$invariant mass: one vector resonance and a scalar non resonant amplitudes.

$$
\begin{aligned}
& \text { B positive } \quad \mathcal{M}_{+}=a_{+}^{\rho} e^{i \delta_{+}^{\rho}+} F_{\rho}^{\mathrm{BW}} \cos \theta+a_{+}^{n r} e^{i \delta_{+}^{n r}} F^{\mathrm{NR}} \\
& \text { B negative } \\
& \mathcal{M}_{-}=a_{-}^{\rho} e^{i \delta_{-}^{\rho}} F_{\rho}^{\mathrm{BW}} \cos \theta+a_{-}^{n r} e^{i \delta_{-}^{n r}} F^{\mathrm{NR}} \\
& F_{R}^{\mathrm{BW}}(s)=\frac{1}{m_{R}^{2}-s-i m_{R} \Gamma_{R}(s)} \quad F^{N R}=1
\end{aligned}
$$

θ is the Gottfried-Jackson angle to spin 1 resonances: $\operatorname{COS} \Theta$ change from -1 to +1

$$
\begin{aligned}
& \Delta|\mathcal{M}|^{2}=\underbrace{\left.\left.\left|\mathcal{M}_{1}-\right| \mathcal{M}_{-}^{\rho}\right)^{2}-\left(a_{-}^{\rho}\right)^{2}\right] \mid F_{\rho}^{\mathrm{BY}} \cos ^{2} \theta}_{+2 \cos \theta\left|D_{\rho}^{B W}\right|^{2}\left|F^{\mathrm{NR}}\right|^{2} \times}\left[\left(a_{+}^{n r}\right)^{2}-\left(a_{-}^{n r}\right)^{2}\right]\left|F^{\mathrm{NR}}\right|^{2} \\
& \boldsymbol{R}\left\{\left(m_{\rho}^{2}-s\right) a_{+}^{\rho} a_{+}^{n r} \cos \left(\delta_{+}^{\rho}-\delta_{+}^{n r}\right)-a_{-}^{\rho} a_{-}^{n r} \cos \left(\delta_{-}^{\rho}-\delta_{-}^{n r}\right)\right] \\
& \text { \| } \left.\left.-m_{\rho} \Gamma_{\rho} a_{+}^{\rho} a_{+}^{n r} \sin \left(\delta_{+}^{\rho}-\delta_{+}^{n r}\right)-a_{-}^{\rho} a_{-}^{n r} \sin \left(\delta_{-}^{\rho}-\delta_{-}^{n r}\right)\right]\right\}
\end{aligned}
$$

Short and Long distance signatures in Dalitz plot.

Short distance :
$\Delta|\mathcal{M}|^{2} \propto\left[\left(a_{+}^{\rho}\right)^{2}-\left(a_{-}^{\rho}\right)^{2}\right] \mid F_{\rho}^{\mathrm{BX}} \cos ^{2} \theta$

Long distance interference S and wave interaction:
Real part of Dalitz CP asymmetry

$$
\Delta^{R}|\mathcal{M}|_{I}^{2} \propto \frac{\left.\cos \theta) m_{\rho}^{2}-s\right)}{\left(m_{\rho}^{2}-s\right)^{2}+m_{R}^{2} \Gamma_{R}^{2}}
$$

Imaginary part of Dalitz CP asymmetry
$\Delta^{I}|\mathcal{M}|_{I}^{2} \propto \frac{\cos \theta){ }_{i}^{2} \Gamma_{\rho}^{2}}{\left(m_{\rho}^{2}-s\right)^{2}+m_{R}^{2} \Gamma_{R}^{2}}$

In the last cases CPT is naturally conserved

CP violation in $B^{\mp} \rightarrow \Pi^{\mp} \Pi^{+} \Pi^{-}$decay. LHCb

 $2011+2012$ data: about $25 \mathrm{~K}^{\mp}{ }^{\mp} \rightarrow \Pi^{\mp} \Pi^{+} \Pi^{-}$eventsDivision related with angular distribution of vector resonances.

Long distance CP asymmetry:
Re-Scaltering $\pi+\pi \rightarrow+$

CP violation through a different hadronic final state.

Wolfenstein (Phys.Rev. D43 (1991) 151-156)_
In a simplified formulation: P particle decay in a family of only two final states $\boldsymbol{\alpha}$ e $\boldsymbol{\beta}$ and $\boldsymbol{\eta}=\mathbf{1}$

$S=\left\{\begin{array}{l}e^{i 2 \delta \alpha} \\ t_{\alpha \beta} e^{i(\delta \alpha+\delta \beta)}\end{array}\right.$

Where the replacement of P by P correspond to changing T_{i} to T_{i}^{*}.
The subtracted square amplitudes is given by:
Satisfying CPT:

$$
\begin{gathered}
\Delta \alpha=|<\alpha| T\left|P>\left.\right|^{2}-|<\bar{\alpha}| T\right| \bar{P}>\left.\right|^{2}=4 \operatorname{Im} \mathrm{~T}_{\alpha}^{*} \mathrm{~T}_{\beta} \\
\Delta \beta=|<\beta| \mathrm{T}\left|\mathrm{P}>\left.\right|^{2}-|<\bar{\beta}| \mathrm{T}\right| \overline{\mathrm{P}}>\left.\right|^{2}=-4 \operatorname{Im} \mathrm{~T}_{\alpha}^{*} \mathrm{~T}_{\beta}
\end{gathered}
$$

Elastic scattering $\quad \Pi^{+} \Pi^{-} \rightarrow \Pi^{+} \Pi^{\boldsymbol{}}$.

CERN-Munich collaboration $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$(1973)
 Nuclear Physics B64 (1973) 134-162.1

S-wave

P-wa, ve

D-wave

FIG. 27. Modulus of the $\pi \pi \rightarrow \bar{K} K$ scattering amplitude $\left\lvert\, \begin{array}{ll}T(\pi \pi & \bar{K} K) \mid \text { from solution I(b). }\end{array}\right.$

Strong coupling:

$$
\boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}
$$

Fig. 6. Argand diagrams $\left(\operatorname{Im} T_{l}^{I}\right.$ versus $\left.\operatorname{Re} T_{l}^{I}\right)$ for the partial wave amplitudes from the energydependent fit. Numbers indicate the $\pi \pi$ energy.

Big deviation of the unitary circle in the S wave between 1 to 1.5 GeV .

Final state interaction
 $\boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}$
 $2011+2012$ data

PHYSICAL REVIEW D 90, 112004 (2014)
Measurements of $\boldsymbol{C P}$ violation in the three-body phase space of charmless $B^{ \pm}$decays
R. Aaij et al. ${ }^{*}$
(LHCb Collaboration)
$\boldsymbol{B}^{\boldsymbol{\mp}} \boldsymbol{\rightarrow} \boldsymbol{K}^{\boldsymbol{7}} \boldsymbol{K}^{+} \boldsymbol{K}^{-}$

$$
\boldsymbol{B}^{\mp} \rightarrow \boldsymbol{K}^{\mp} \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-}
$$

Scattering $\Pi^{+} \Pi^{-} \rightarrow K^{+} K^{-}$and CP violation $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \boldsymbol{e} \boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{K}^{-}$.
 I. B., T. Frederico and O. Lourenço -Phys. Rev. D 89, 094013 (2014)

The dominant amplitudes for these charmless three body decay can be write down as a sum :

$$
\mathbf{M}^{ \pm}=\mathbf{A}+\mathbf{B} \mathbf{e}^{ \pm \mathrm{iy}}
$$

CP operation changes signal of the weak phase $\boldsymbol{\gamma}$. Penguin doesn't need to have a strong phase, or does not need to take only the time-like contribution gluon.

Taking $\boldsymbol{\alpha}$ as final state $K^{+} K^{-}$and $\boldsymbol{\beta}$ the couple channel $\Pi^{+} \Pi^{-}$, with an appropriated S-Matrix for the re-scattering given by the asymmetry is given by::

$$
\begin{array}{lll}
\Delta \Gamma_{\alpha}=4 \sin \gamma\left(\zeta_{0}+\sqrt{ }\left(1-\eta^{2}\right) \zeta_{1}\right. & \zeta_{0}=\operatorname{Imag}\left[\mathrm{B}^{*}{ }_{0 \alpha} \mathrm{~A}_{0 \alpha}\left(1+\mathrm{i}\left(\mathrm{t}_{\alpha \alpha}-\mathrm{t}_{\alpha \alpha}^{*}\right)\right)\right] & \text { BSS term } \\
& \zeta_{1}=\operatorname{Real}\left[\mathrm{B}^{*}{ }_{0 \alpha} \mathrm{~A}_{0 \beta} \mathrm{e}^{\mathrm{i}(6 \alpha+6 \beta)}-\mathrm{B}^{*}{ }_{o \beta} \mathrm{~A}_{0 \alpha} \mathrm{e}^{\mathrm{i}(6 \alpha+\delta \beta)}\right] & \text { Wolfenstein }
\end{array}
$$

$\boldsymbol{\delta}_{\boldsymbol{\alpha}}$ and $\boldsymbol{\delta}_{\boldsymbol{\beta}}$ are strong phase associated to the $\boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}$scattering and $\boldsymbol{\eta}$ the $\Pi^{+} \Pi^{-}$inelasticity.

Scattering $\Pi^{+} \Pi^{-} \rightarrow K^{+} \mathbf{K}^{-}$and CP violation $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-} \boldsymbol{e} \boldsymbol{B}^{+} \boldsymbol{\rightarrow} \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{K}^{-}$.
 I. B., T. Frederico and O. Lourenço Phys. Rev. D 89, 094013 (2014)-

Tu in thoch he res scathering

PHYSICAL REVIEW D 90, 112004 (2014)
Measurements of $\boldsymbol{C P}$ violation in the three-body phase space of charmless $B^{ \pm}$decays

$$
\text { R. Aaij et al. }{ }^{*}
$$

(LHCb Collaboration)

TABLE I. Signal yields of charmless three-body $B^{ \pm}$decays for the full data set.

Decay mode	Yield
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	181074 ± 556
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	109240 ± 354
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	24907 ± 222
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	6161 ± 172

LHCb results: projections

$$
\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Pi}^{+} \boldsymbol{\Pi} \boldsymbol{I}
$$

$$
\boldsymbol{B}^{+} \rightarrow \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-}
$$

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{K}$

Dalitz interference CP asymmetry between $\rho(770)$,

 $\boldsymbol{f}_{\underline{o}}(\mathbf{9 8 0})$, non resonant, $K^{+} \underline{K}^{+} \rightarrow \boldsymbol{I I}^{+} \underline{\boldsymbol{I}}^{-}$-Alvarenga Nogueira et al. arXiv:1506.08332 [hep-ph] $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \pi^{-} \pi^{+}$

$$
\begin{aligned}
& \left\langle\lambda_{0}\right| H_{w}|h\rangle=A_{0 \lambda}+e^{-\imath \gamma} B_{0 \lambda} \\
& \left\langle\bar{\lambda}_{0}\right| H_{w}|\bar{h}\rangle=A_{0 \lambda}+e^{+\imath \gamma} B_{0 \lambda}
\end{aligned}
$$

$$
\begin{array}{rl}
\mathcal{A}_{0 \lambda}^{ \pm}=a_{0}^{\rho} F_{\rho}^{\mathrm{BW}} & k(s) \cos \theta+a_{0}^{f} F_{f}^{\mathrm{BW}}+\frac{a_{0 \lambda}^{n r}+b_{0 \lambda}^{n r} e^{ \pm i \gamma}}{1+\frac{s}{\Lambda_{\lambda}^{2}}}+\left[b_{0}^{\rho} F_{\rho}^{\mathrm{BW}} k(s) \cos \theta+b_{0}^{f} F_{f}^{\mathrm{BW}}\right] e^{ \pm i \gamma} \\
& +i \sum_{\lambda^{\prime}, J} t_{\lambda^{\prime}, \lambda}^{J}\left(A_{0 \lambda^{\prime} N R}^{J}+e^{ \pm i \gamma} B_{0 \lambda^{\prime} N R}^{J}\right)
\end{array}
$$

For our propose we need only these amplitudes in the Isobar mode

$$
\mathcal{A}_{0 \lambda}^{ \pm}=a_{0}^{\rho} F_{\rho}^{\mathrm{BW}} k(s) \cos \theta+a_{0}^{f} F_{f}^{\mathrm{BW}}+\frac{a_{0 \lambda}^{n r}+b_{0 \lambda}^{n r} \pm i \gamma}{1+\frac{s}{\Lambda_{\lambda}^{2}}}+\left[b_{0}^{\rho} F_{\rho}^{\mathrm{BW}} k(s) \cos \theta+b_{0}^{f} F_{f}^{\mathrm{BW}}\right] e^{ \pm i \gamma}
$$

the S matrix

$$
S=\left[\begin{array}{cc}
\eta e^{2 i \delta_{\pi \pi}} & \left.\begin{array}{c}
1 \sqrt{1-\eta^{2}} e^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} \\
i \sqrt{1-\eta^{2}} e^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} \\
\eta e^{2 i \delta_{K K}}
\end{array}\right] \quad F_{R}^{\mathrm{BW}}(s)=\frac{1}{m_{R}^{2}-s-i m_{R} \Gamma_{R}(s)}
\end{array}\right]
$$

Note that in our formalism, the
Penguin does not need to have a strong phase

Non-resonant amplitude and $K^{+} K^{+} \rightarrow \Pi^{+} \Pi^{-}$parameters

$\ldots=\frac{\mathbf{a}_{\mathbf{0}}+\mathbf{b}_{\mathbf{0}} \mathbf{e}^{ \pm i y}}{\mathbf{1 + \mathbf { S } / \boldsymbol { \Lambda } ^ { 2 }}}$

This form factor carries a momentum scale associated with the overlap function between the B and pion states, which should reflect a spatial region with size smaller then the B meson.

Parametrization to the inelasticity factor give big uncertainty

$$
\begin{aligned}
& \eta_{0}^{(0)}=1-\left(\epsilon_{1} \frac{k_{2}}{s^{1 / 2}}+\epsilon_{2} \frac{k_{2}^{2}}{s}\right) \frac{M^{12}-s}{s} ; \\
& \epsilon_{1}=2.4 \pm 0.2, \quad \epsilon_{2}=-5.5 \pm 0.8
\end{aligned}
$$

k_{2} is a kinematic factor

$$
k_{2}=\frac{\sqrt{s-4 m_{K}^{2}}}{2},
$$

J. R. Pelaez, and F. J. Ynduráin, Phys. Rev. D 71, 074016 (2005).

General equation to CP asymmetry

A general equation to describe CP asymmetry for both, long and short distance is given by:

$$
\begin{align*}
& \Delta \Gamma_{\lambda}=\mathcal{A}\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)^{-2}+\mathcal{B} \sqrt{1-\eta^{2}(s)} \cos \left[2 \delta_{\pi \pi}(s)\right]\left[\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)\right]^{-1}+ \\
& +\mathcal{C}\left|F_{\rho}^{\mathrm{BW}}(s)\right|^{2} k^{2}(s) \cos ^{2} \theta+ \\
& +\left|F_{\rho}^{\mathrm{BW}}(s)\right|^{2} k(s) \cos \theta\left\{\left(m_{\rho}^{2}-s\right)\left[\mathcal{D}\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)^{-1}-\mathcal{D}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} \sqrt{1-\eta^{2}(s)} \sin \left[2 \delta_{\pi \pi}(s)\right]\right]+\right. \\
& \left.+\mathcal{D}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} m_{\rho} \Gamma_{\rho}(s) \sqrt{1-\eta^{2}(s)} \cos \left[2 \delta_{\pi \pi}(s)\right]\right\}+ \\
& +\left|F_{\rho}^{\mathrm{BW}}(s)\right|^{2} k(s) \cos \theta\left\{m_{\rho} \Gamma_{\rho}(s)\left[\mathcal{E}\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)^{-1}+\mathcal{E}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} \sqrt{1-\eta^{2}(s)} \sin \left[2 \delta_{\pi \pi}(s)\right]\right]+\right. \\
& \left.+\mathcal{E}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1}\left(m_{\rho}^{2}-s\right) \sqrt{1-\eta^{2}(s)} \cos \left[2 \delta_{\pi \pi}(s)\right]\right\}+ \\
& +\mathcal{F}\left[\left(m_{\rho}^{2}-s\right)\left(m_{f}^{2}-s\right)+m_{\rho} \Gamma_{\rho}(s) m_{f} \Gamma_{f}(s)\right]\left|F_{\rho}^{\mathrm{BW}}(s)\right|^{2}\left|F_{f}^{\mathrm{BW}}(s)\right|^{2} k(s) \cos \theta+ \\
& +\mathcal{G}^{\mathrm{B}}\left[\left(m_{\rho}^{2}-s\right) m_{f} \Gamma_{f}(s)-m_{\rho} \Gamma_{\rho}(s)\left(m_{f}^{2}-s\right)\right]\left|F_{\rho}^{\mathrm{BW}}(s)\right|^{2}\left|F_{f}^{\mathrm{BW}}(s)\right|^{2} k(s) \cos \theta+ \\
& +\left|F_{f}^{\mathrm{BW}}(s)\right|^{2}\left\{\left(m_{f}^{2}-s\right)\left[\mathcal{H}\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)^{-1}-\mathcal{H}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} \sqrt{1-\eta^{2}(s)} \sin \left[2 \delta_{\pi \pi}(s)\right]\right]+\right. \\
& \left.+\mathcal{H}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} m_{f} \Gamma_{f}(s) \sqrt{1-\eta^{2}(s)} \cos \left[2 \delta_{\pi \pi}(s)\right]\right\} \\
& +\left|F_{f}^{\mathrm{BW}}(s)\right|^{2}\left\{m_{f} \Gamma_{f}(s)\left[\mathcal{P}\left(1+\frac{s}{\Lambda_{\lambda}^{2}}\right)^{-1}+\mathcal{P}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1} \sqrt{1-\eta^{2}(s)} \sin \left[2 \delta_{\pi \pi}(s)\right]\right]+\right. \\
& \left.+\mathcal{P}^{\prime}\left(1+\frac{s}{\Lambda_{\lambda^{\prime}}^{2}}\right)^{-1}\left(m_{f}^{2}-s\right) \sqrt{1-\eta^{2}(s)} \cos \left[2 \delta_{\pi \pi}(s)\right]\right\}+\mathcal{Q}\left|F_{f}^{\mathrm{BW}}(s)\right|^{2}, \tag{5.12}
\end{align*}
$$

CP violation in $B{ }^{\mp} \rightarrow \underline{\Pi}^{\mp}-\underline{\Pi}^{+} \underline{\Pi}^{-}$and $\underline{B}^{\mp} \rightarrow$ II $^{\mp} \underline{K}^{+} \underline{K}^{-}$-Decays

$$
\mathrm{B}^{\mp} \rightarrow \Pi^{\mp} \Pi^{+} \Pi^{-}
$$

$\mathrm{B}^{\mp} \rightarrow \mathrm{I}^{\mp} \mathrm{K}^{+} \mathrm{K}^{-}$

S and P wave interference and Re-scattering $\boldsymbol{K}^{+} \boldsymbol{K}^{-} \rightarrow \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-}$

$$
\begin{gathered}
\text { Re-scattering } \\
\Pi^{+} \Pi^{-} \rightarrow K^{+} \boldsymbol{K}^{-}
\end{gathered}
$$

CP violation in $B^{\mp} \rightarrow K^{\mp}-\underline{I I}^{+} \underline{\underline{I}}^{-}$and $\underline{B}^{\mp} \rightarrow K^{\mp}-\underline{K}^{+} \underline{K}^{-}$Decays

$$
\mathrm{B}^{\mp} \rightarrow \mathrm{K}^{\mp} \Pi^{+} \Pi^{-}
$$

S and P wave interference and Re-scattering $\boldsymbol{K}^{+} \boldsymbol{K}^{-} \rightarrow \boldsymbol{\Pi}^{+} \boldsymbol{\Pi}^{-}$

$\mathrm{B}^{\mp} \rightarrow \mathrm{K}^{\mp} \mathrm{K}^{+} \mathrm{K}^{-}$

> Re-scattering $\Pi^{+} \Pi^{-} \rightarrow K^{+} K^{-}$

Summary

* CPT constraint must be take in account in three body charmless B decay.
- We propose a general formalism using CPT constraint.
\rightarrow CP violation in $B^{\mp} \rightarrow \Pi^{\mp} \Pi^{+} \Pi^{-}$and $B^{\mp} \rightarrow \Pi^{\mp} K^{+} K^{-}$decays seems present together compatibility with CPT constraint.
$\rightarrow C P$ violation in $B^{\mp} \rightarrow K^{\mp} \Pi^{+} \Pi^{-}$and $B^{\mp} \rightarrow K^{\mp} K^{+} K^{-}$decays seems present together compatibility with CPT constraint.
$\rightarrow S$ and P wave interference has a clear signature in CP violation distributions
\rightarrow Amplitude $\Pi^{+} \Pi^{-} \rightarrow K^{+} K^{-}$play an important rule in these decays.
\rightarrow Amplitude analysis must improve this preliminary analysis.

$\boldsymbol{C P}$ violation in $\boldsymbol{B}^{\mp} \rightarrow$ I $^{\mp} \underline{\underline{I}}^{+} \underline{\underline{I}}^{-}$decay.

Symmetrize effect

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Pi}^{+} \boldsymbol{I}^{-}$and $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{K}^{-}$decays

$m\left(\pi^{+} \pi\right)\left[\mathrm{GeV} / c^{2}\right]$

$$
\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{D}^{+} \boldsymbol{D}^{-} \boldsymbol{B}^{+} \rightarrow \boldsymbol{\Pi}^{+} \boldsymbol{D}^{+} \boldsymbol{D}_{s}^{-} ?
$$

