

Searches for BSM Higgs Bosons with ATLAS

Gabriela Navarro
Universidad Antonio Nariño
On behalf of the ATLAS Collaboration

LISHEP 2015 Manaus, August 3rd 2015

Outline

- BSM Higgs models.
- Search for the Neutral Higgs Boson in the MSSM.
- Search for a CP-odd Higgs Boson A → Zh
- Search for Charged Higgs Bosons.
- Other BSM Higgs Bosons searches with ATLAS.
- Summary.

BSM Higgs models

Two Higgs Doublet Model (2HDM)

- Addition of a second complex Higgs doublet: φ₁ and φ₂
 - If the potential is CP conserving \rightarrow 5 Higgs Bosons:
- → two CP-even scalar fields h and H
- one pseudoscalar CP-odd field A
- two charged fields H[±]
- Parameters:

```
m_h, m_H, m_A, m_{H\pm}
```

 α : rotation angle that diagonalizes the mass-squared matrices of the CP-even scalars.

tan β: ratio of vacuum expectation values of the scalar fields

- Different type models:
- \rightarrow Type-I: all quarks couple to ϕ_2 .
- Type-II right-handed up quarks couple to ϕ_2 and right-handed down quarks couple to ϕ_1
- \rightarrow Lepton specific: ϕ_1 couples to leptons and ϕ_2 to quarks.
- Flipped: like type II but leptons couple to φ₂.

MSSM

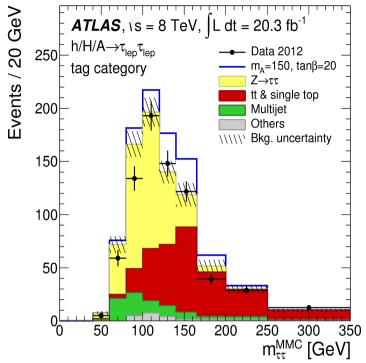
- In the MSSM model two Higgs doublets are necessary (at tree level MSSM is a type-II 2HDM).
- Beyond lowest order, benchmark scenarios are defined fixing at specific values the additional parameters.

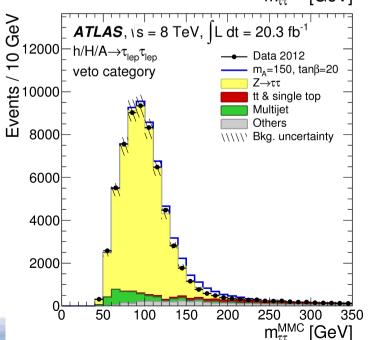
Search for the Neutral Higgs boson of the MSSM in the ττ decay mode

- In the MSSM, the Higgs boson couplings to τ leptons and b-quarks are strongly enhanced for a large part of the parameter space (large tan β values)
- Search in the di-τ decay mode.
- Higgs production: gluon fusion and association with b-quarks
- To reconstruct ττ system invariant mass two approaches are used:
- → MMC (Missing Mass Calculator)
- → ττ total transverse mass:

$$m_T^{total} = \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(\tau_1, E_T^{miss}) + m_T^2(\tau_2, E_T^{miss})}$$
 $m_T = \sqrt{2p_{T1}p_{T2}(1 - \cos(\Delta\phi))}$

• The τ+ τ- decay channel is analyzed in these categories:


$$\tau_{lep} \ \tau_{lep}$$
 $\tau_{had} \ \tau_{had}$

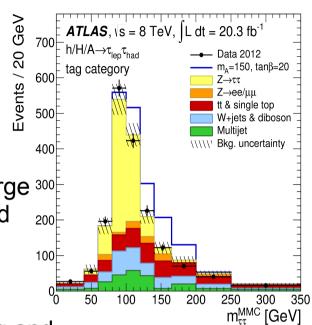

Search for the neutral Higgs Boson in the

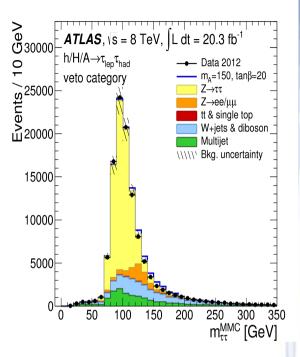
MSSM

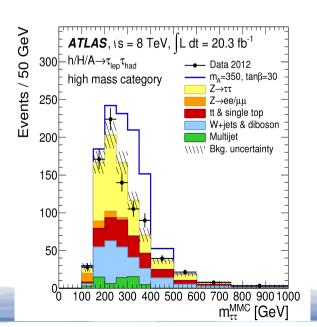
τ τ channel Event Selection

- Exactly 1 isolated electron and 1 isolated muon with opposite charge.
- $Pt_e > 15 \text{ GeV}$, $Pt_{\mu} > 10 \text{ GeV}$.
- Two categories: presence (tag) or absence (veto) of b-tagged jet
- → Tag:
- exactly 1 jet satisfying b-jet id.
- Kinematic requirements to reduce the background from top quark decays.
- → Veto
- No jet satifies the b-jet id criterion.
- ✓ Top quark background smaller → kinematic selection requirements looser.
- Main Backgrounds: Z/γ* + jets, ttbar, multijet production
- MMC mass : discriminating variable

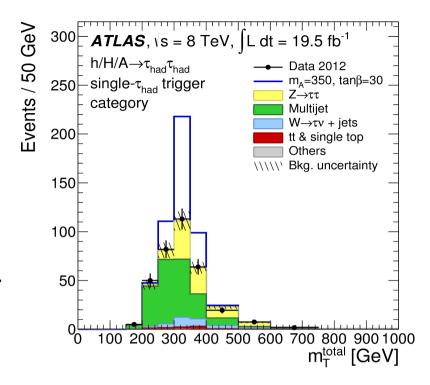
Search for the neutral Higgs Boson in the MSSM

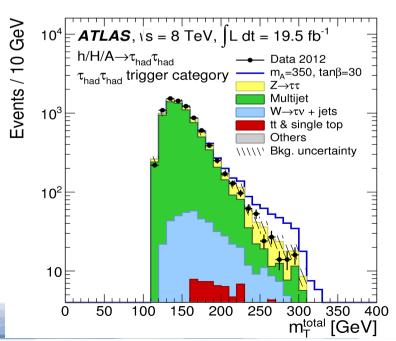

 $\tau_{_{\text{lep}}}\,\tau_{_{\text{had}}}$ channel


Event Selection


• Only 1 electron or 1 muon with pt > 26 GeV and an oppositely charge τ_{had} with pt > 20 GeV and medium id τ_{had} criterion.

- → low mass region (m_A<200 GeV): tag and veto</p>
- → high mass region (m_A ≥ 200 GeV).
- Main Backgrounds: Z/γ* + jets, W+ jets, multijet production, top, diboson production.
- MMC mass: discriminating variable




Search for the Neutral Higgs Boson in the MSSM

 $\tau_{_{\text{had}}}\,\tau_{_{\text{had}}}$ channel

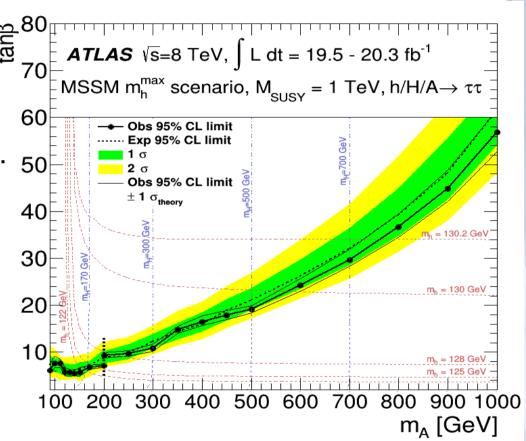
Event Selection

- At least, two τ_{had} . Events with e or muons rejected.
- Pt_{nhad} >50 GeV, opposite charge, $\Delta \phi$ (τ_{had} , τ_{had}) > 2.7 (back to back)
- Two categories:
- → Single τ_{had} trigger (STT)
- \rightarrow τ_{had} τ_{had} trigger (DTT)
- Main Background: multijet production.
 Less dominant: Z/γ* + jets, W+jets, ttbar, diboson production
- Discriminating variable: Total transverse mass m_T^{total}

Search for the neutral Higgs Boson in the MSSM : Results

As data is in good agreement with predicted background yields, limits are calculated.

 M_h^{max} scenario

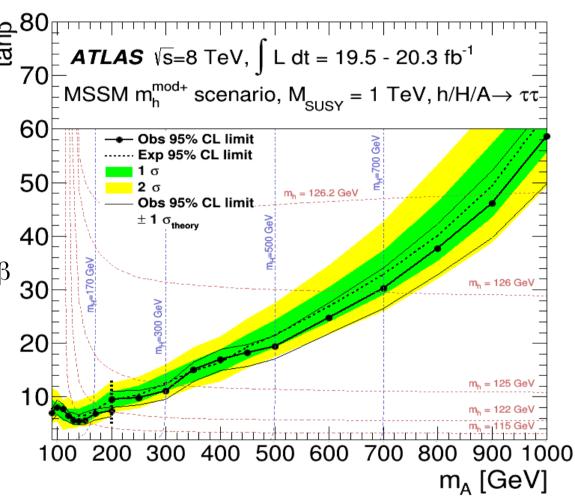

Best tan β constraint:

- \rightarrow Excludes tan $\beta > 5.4$ for m_{Δ}=140 GeV.
- → Also, $tan\beta > 37$ is excluded for $m_A = 800$ GeV.

If the light CP-even Higgs of the MSSM has a mass of ~ 125 GeV then :

 M_A <160 GeV is excluded for all tan β values.

Also, tan $\beta > 10$ and tan $\beta < 4$ are excluded for all m_{Δ} values.


Search for Higgs Boson in the MSSM: Results

 $M_{\scriptscriptstyle h}^{\scriptscriptstyle \; mod}$ scenario

If the light CP-even Higgs of the MSSM has a mass of ~ 125 GeV then :

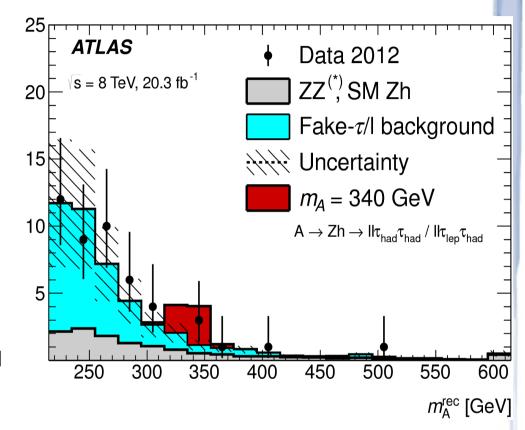
 M_A <200 GeV is excluded for all tan β Values.

Also, tan $\beta < 5.5$ is excluded for all m_a values.

Search for a CP-odd Higgs Boson A → Zh PL B 744 (2015) 163

- Search for a heavy CP-odd Higgs Boson decaying into a Z boson and the h ~ 125 GeV Higgs Boson.
- A → Zh can be dominant for part of the 2HDM parameter space, especially for A mass below the ttbar threshold. In this case A is produced via gluon fusion.
- Search performed in the A mass range: 220 1000 GeV, reconstructing:

$$Z \to \ell\ell$$
 (e, μ) with h \to bb or h $\to \tau\tau$ $Z \to \nu\nu$ with h \to bb


- Transverse mass of Zh pair used to search for a signal
- In the search $A \to Zh \to \ell\ell$ $\tau\tau$, three channels: $\ell\ell$ τ_{had} τ_{had} , $\ell\ell$ τ_{lep} τ_{had} , $\ell\ell$ τ_{lep} τ_{lep}

$$\ell\ell + \tau_{had} \tau_{had}$$

- Exactly 2 leptons with opposite charge and two opposite charge τ_{had}
- Loose τ_{had} identification (65% eff).
- Dominant background: Fake τ had
 (Z+jets)

$$\ell\ell$$
 + τ_{lep} τ_{had}

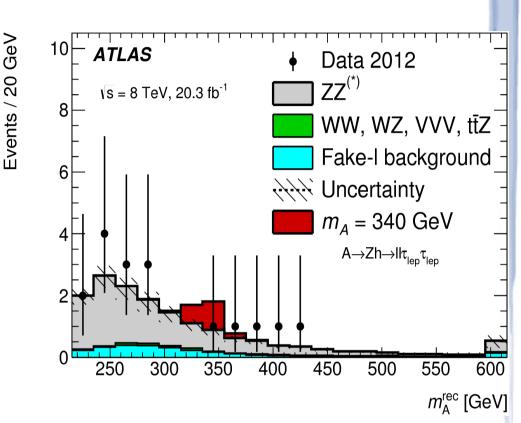
- Exactly 3 leptons and exactly one τ_{had}
- Medium τ_{had} identification (55% eff).
- Half of background: "Fake τ_{had}/ℓ " (Z+jets)
- Half of background : ZZ* production and SM Zh production (11%)

$$m_A^{rec} = m_{ll\, au au} - m_{ll} - m_{ au au} + m_Z + m_h$$

$$\sigma$$
 x BR = 50 pb

Search for A \rightarrow Zh: Z \rightarrow II, h \rightarrow $\tau\tau$

PL B 744 (2015) 163


$$\ell\ell + \tau_{lep} \tau_{lep}$$

- At least 4 leptons which form:
- → one same flavour and opposite-sign pair with 80 < m_n < 100 GeV
- same or different flavour pair with 90 < m_π < 190 GeV
- Two categories according to the lepton flavour in the h decay:
 ee, μμ SF
- Main Backgrounds

eμ DF

SF: ZZ* production with Z \rightarrow ee, $\mu\mu$

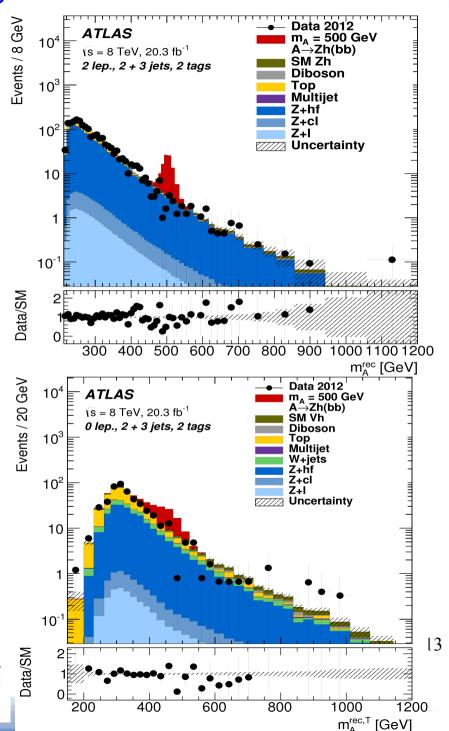
DF: ZZ* production with Z $\rightarrow \tau_{lep}^{}$ $\tau_{lep}^{}$

$$\sigma$$
 x BR = 50 pb

$$m_A^{rec} = m_{ll\, au au} - m_{ll} - m_{ au au} + m_Z + m_h$$

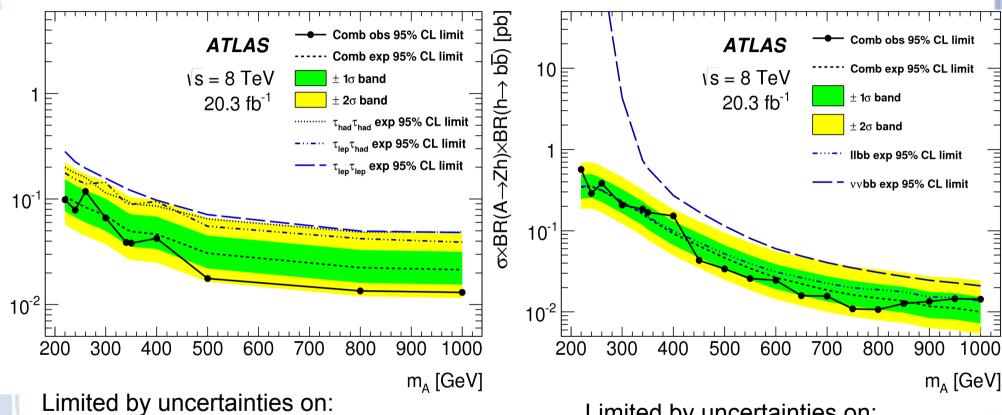
Search for $A \rightarrow Zh$: $Z \rightarrow \ell \ell / \nu \nu$, $h \rightarrow bb$

PL B 744 (2015) 163


ℓℓ + bb

- Two electrons or 2 muons with pT > 7 GeV.
- $83 < m_{\ell\ell} < 99 \text{ GeV}$
- Two b-tagged jets with pT> 45 (20) GeV
- h → bb decay selected requiring 105 < m_{bb} < 145 GeV.
- Backgrounds: Z+jets, top-quark

vv + bb

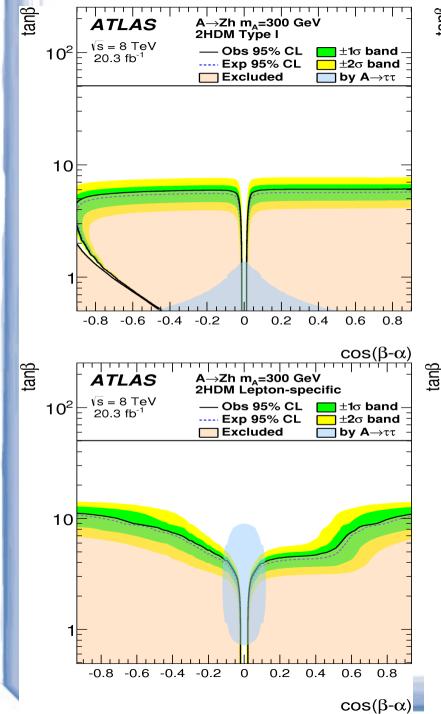

- $E_{T}^{MISS} > 120 \text{ GeV}, p_{T}^{MISS} > 30 \text{ GeV}.$
- No electrons and muons with pT > 7 GeV.
- Same jet selection as \(\ell\)bb + veto of additional jets.
- h → bb decay selected requiring 105 < m_{bb} < 145 GeV.
- Requirements on angular quantities.
- Backgrounds: Z+jets, W+jets, top-quark, multijets

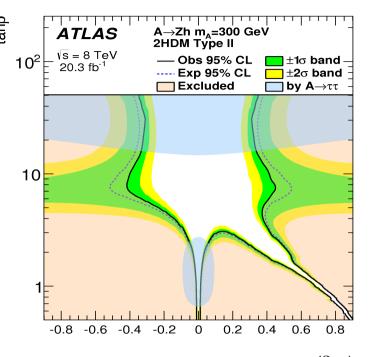
$$m_A^{rec} = \sqrt{(E_T^{bb} + E_T^{miss})^2 - (ec{p}_T^{bb} + ec{E}_T^{miss})^2}$$

Search for A → Zh : Results

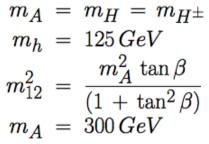
Exclusion limits at the 95% CL are set on the $\sigma(gg \rightarrow A) \times BR(A \rightarrow Zh) \times BR(h \rightarrow bb/\tau\tau)$

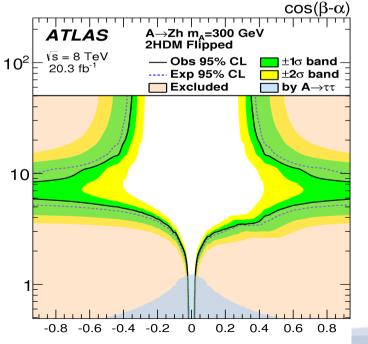
- Background theoretical cross section
- $\boldsymbol{\nu} \ \boldsymbol{\tau}_{\text{had}}$ identification and energy scale
- \sim Fake $\tau_{had/\ell}$


 $5 \times BR(A \rightarrow Zh) \times BR(h \rightarrow ττ)$ [pb]


Limited by uncertainties on:

- Jet energy scale
- B-tagging efficiency


14

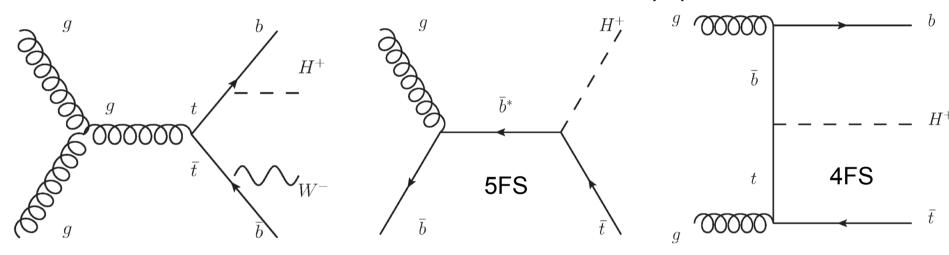

Search for A → Zh : 2HDM interpretations

Assumptions:

 $cos(\beta-\alpha)$

Blue shaded area denotes previous $A \rightarrow \tau \tau$ searches excluded regions.

Search for Charged Higgs $H^{\pm} \rightarrow \tau \nu$


JHEP03 (2015) 088

 Charged Higgs Bosons are predicted by several BSM models, such as 2HDM or models with Higgs triplets.

Light charged Higgs $m_H < m_{top}$ Production $t \rightarrow H^{\pm} b$ Heavy charged Higgs

m_H > m_{top}

Production via top quark association

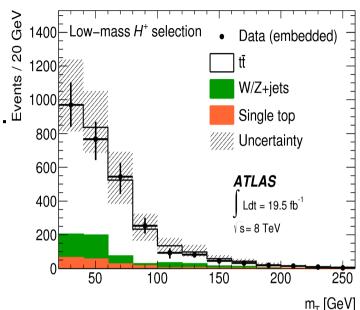
Decay mode: $H^{\pm} \rightarrow \tau^{\pm} \ \nu$

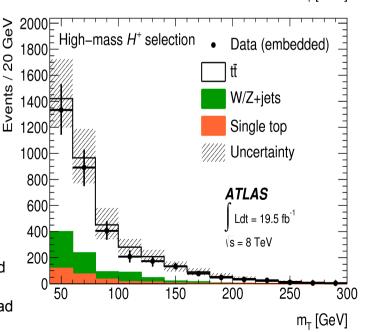
Charged Higgs mass ranges: 80 - 160 GeV, 180 – 1000 GeV. Final state:

- Presence of τ_{had} , E_{t}^{miss} , b-quark jets, hadronically decaying W.
- Absence of any isolated e or μ with high pT.

Search for Charged Higgs $H^{\pm} \rightarrow \tau^{\pm} \ \nu$

JHEP03 (2015) 088

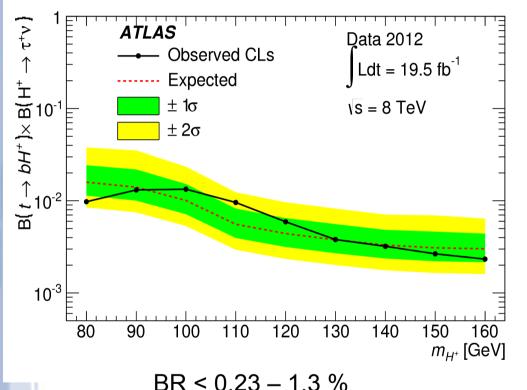

Event selection


- At least 4 (3) selected jets for low-mass (high).
 At least one of these iets being b to an analysis.
- Exactly one τ_{had} with pT > 40 GeV.
- No e or μ in the event.
- $E_{.}^{miss} > 65 (80) \text{ GeV}.$
- Discriminating variable: transverse mass

$$m_T = \sqrt{2p_T^{ au}E_T^{miss}\left(1\,-\,\cos\Delta\phi_{ au,miss}
ight)}$$

Backgrounds

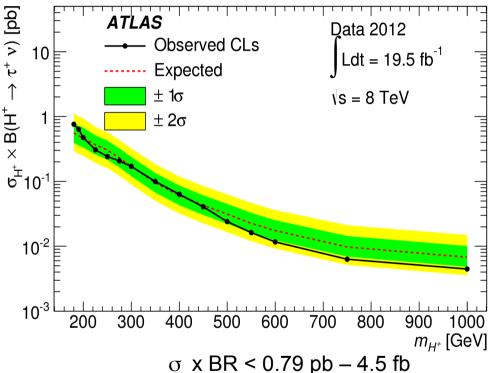
- Data-driven estimation for backgrounds that contain a real τ_{had} from a vector boson decay and backgrounds with a jet misidentified as $\tau_{_{\text{had}}}$
- Small contribution from e/ μ misidentified as $\tau_{\mbox{\tiny had}}$ is estimated from simulations.



17

Search for Charged Higgs $H^{\pm} \rightarrow \tau^{\pm} \nu$: Results

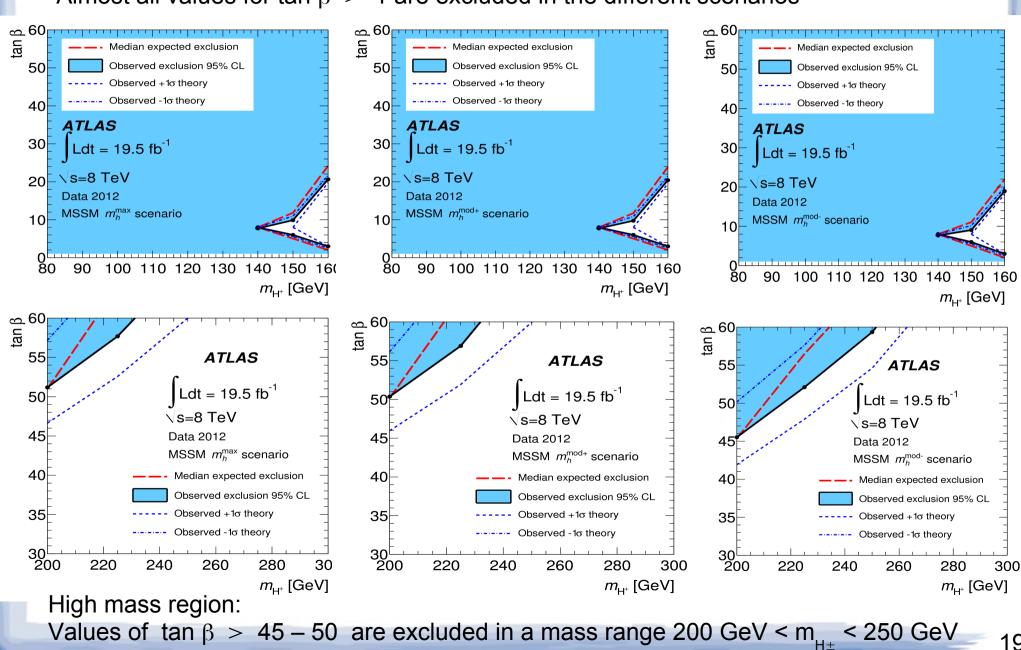
JHEP03 (2015) 088


Low-mass Exclusion limits at 95% CL on: BR(t \rightarrow bH[±]) x BR(H[±] \rightarrow τ [±] ν)

Main systematic uncertainties:

- Measurement of the trigger efficiency
- Simulation of the detector response to τ_{had}

High-mass Exclusion limits at 95% CL on: $\sigma(pp \to tH^{\pm} + X) \times BR(t \to bH^{\pm}) \times BR(H^{\pm} \to \tau^{\pm} \ \nu$)



Main systematic uncertainties

- Multi-jet background
- True τ_{had} background

18

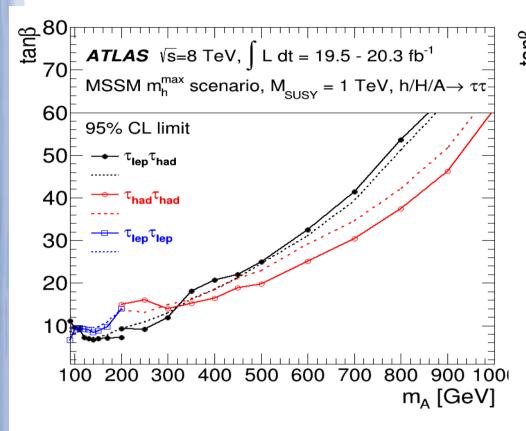
Low mass region: Almost all values for tan $\beta > 1$ are excluded in the different scenarios

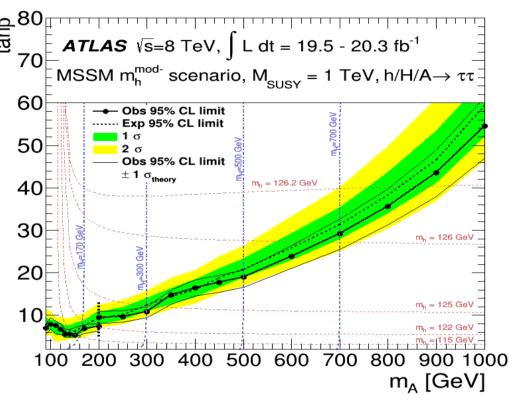
Other ATLAS BSM Higgs Bosons searches

- Search for Higgs Boson in the NMSSM [arXiv:1505.01609, submitted to PRD].
- Higgs to invisible: search for SM Higgs boson decaying to DM.
- In association with hadronically decaying vector Boson [arXiv:1504.04324, accepted EPJC].
- VBF production [ATLAS-CONF-2015-004]
- Higgs triplet models: H[±] → W[±] Z [Phys. Rev. Lett. 114, 231801 (2015)]
- $H \rightarrow ZZ_d \rightarrow 4\ell$, $H \rightarrow Z_d Z_d \rightarrow 4\ell$ [arXiv:1505.07645, submitted to PRD].
- Search for additional heavy Higgs boson in the H → ZZ decay [arxiv:1507.05930, submitted to EPJC]
- Search for Higgs Boson Pair Production in the $\gamma\gamma$ bb final State: H \rightarrow hh \rightarrow bb $\gamma\gamma$ [Phys. Rev. Lett. 114, 081802 (2015)]
- Search for Higgs boson pair production in the b bbar b bbar final state: $H \rightarrow hh$ $\rightarrow bb$ bb [arXiv:1506.00285, submitted to EPJC].

Summary

- Three recent ATLAS searches for BSM Higgs Boson have been presented:
- Search for neutral Higgs Bosons of MSSM
- $h/H/A \rightarrow \tau\tau$
- → Results interpreted in the MSSM parameter space for m_h^{max}, m_h^{mod+} and m_h^{mod-} benchmark scenarios.
- Search for CP-odd Higgs Boson decaying to Zh (A → Zh)
- → Considering $\ell\ell$ τ_{had} τ_{had} , $\ell\ell$ τ_{lep} τ_{had} , $\ell\ell$ τ_{lep} τ_{lep} , $\ell\ell bb$, $\nu\nu bb$ final states.
- → Results interpreted in 2HDM


Summary


- Search for charged Higgs decaying to $\tau \nu$ (H $^{\pm} \rightarrow \tau^{\pm} \nu$)
- → Low-mass and high-mass regions
- → Results interpreted in the MSSM parameter space for m_h^{max}, m_h^{mod+} and m_h^{mod-} benchmark scenarios.

More analyses are coming in Run 2
 Exciting time for searches! Stay tuned!

Back

Search for the Neutral Higgs boson of the MSSM

Limits for MSSM m_h^{max} per channel

Limits for MSSM m_h mod-

2.5

Search for the Neutral Higgs Boson in the MSSM

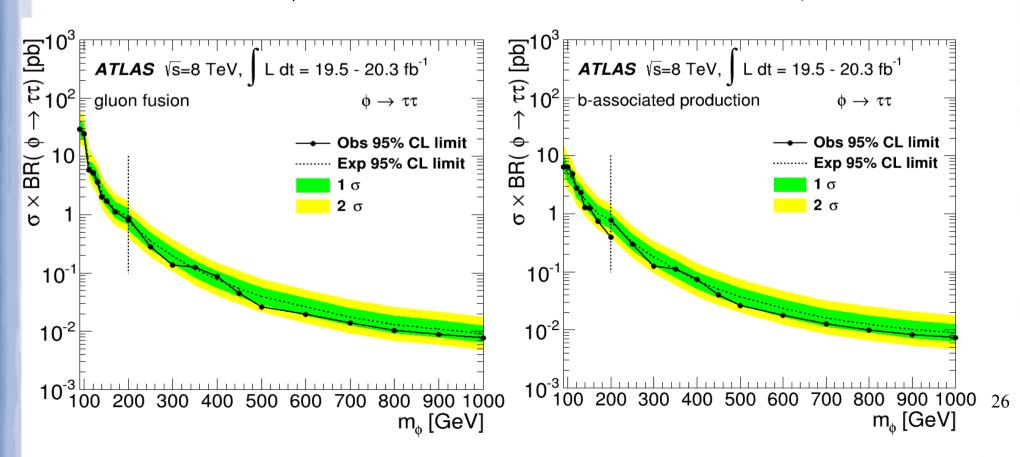
	$ au_e au_\mu$		$ au_{ m lep} au_{ m had}$		$ au_{ m had} au_{ m had}$	
	Signal	Background	Signal	Background	Signal	Background
	[%]	[%]	[%]	[%]	[%]	[%]
Data-driven methods	-	$^{+3}_{-4}/2$	-	14/4	-	7/0
Cross-section	$^{+14}_{-18}/^{+14}_{-17}$	4/5	$^{+14}_{-19}/^{+14}_{-17}$	3/4	$^{+14}_{-19}/^{+14}_{-17}$	2/2
Acceptance modelling	$20/^{+4}_{-2}$	4/5	$^{+14}_{-20}/^{+1}_{-3}$	6/9	$^{+14}_{-17}/^{+2}_{-1}$	$^{+9}_{-6}/5$
e/μ selection	3/3	4/4	2/2	1/2	-	-
au selection	-	-	4/4	3/5	11/11	4/5
b-tagging	5/0	2/0	$^{+4}_{-8}/1$	$^{+7}_{-6}/0$	6/0	0/0
Energy scale	$^{+4}_{-7}/1$	$^{+4}_{-6}/1$	$^{+5}_{-13}/7$	$^{+8}_{-10}/11$	$^{+37}_{-30}/^{+21}_{-16}$	$^{+12}_{-9}/6$
Luminosity	4/4	3/4	4/4	3/3	4/4	1/1
Total	$^{+25}_{-29}/^{+15}_{-18}$	$^{+9}_{-10}/9$	$^{+22}_{-32}/^{+17}_{-19}$	$^{+18}_{-20}/16$	$^{+44}_{-41}/^{+28}_{-26}$	$^{+17}_{-13}/9$

Summary of systematic uncertainties on the estimated signal and background event yields in the $\tau\tau$ decay channels. All numbers are in per cent.

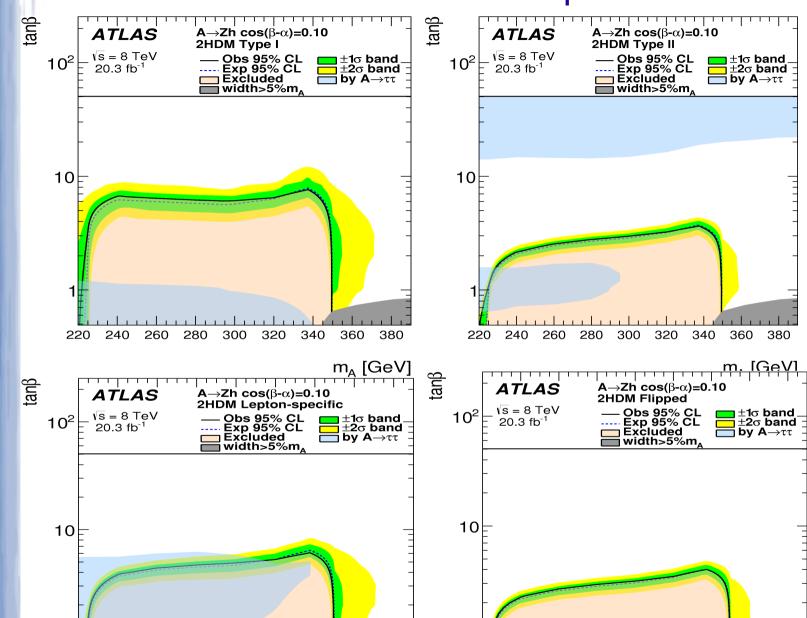
The signal uncertainties are for the parameter choice $m_{A}=150$ GeV and $\tan\beta=20$.

The first number in each entry refers to the b-tagged sample and the second to the b-vetoed sample.

Search for Neutral Higgs boson of the MSSM


Single scalar boson φ, with narrow width relative to experimental mass resolution

Exclusion region:


- σ x BR > 29 pb for m ϕ = 90 GeV to
- σ x BR > 7.4 fb for m ϕ = 1000 GeV

Exclusion region:

- σ x BR > 6.4 pb for m ϕ = 90 GeV to
- σ x BR > 7.2 fb for m ϕ = 1000 GeV

Search for A → Zh: 2HDM interpretations

m_A [GeV]

m₄ [GeV]

Assumptions:

$$m_{A} = m_{H} = m_{H^{\pm}}$$
 $m_{h} = 125 \, GeV$
 $m_{12}^{2} = \frac{m_{A}^{2} \, \tan \beta}{(1 + \tan^{2} \beta)}$

 $\cos(\beta - \alpha) = 0.1$

Blue shaded area denotes previous $A \rightarrow \tau\tau$ æarches excluded regions.