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Resumé

Fundamentals: the formulation of Quantum Field Theories in
toroidal topologies, such as presented in the recent
developments:
F. C. Khanna, APCM , J. M. C. Malbouisson and A. E. Santana,
Quantum field theory on toroidal topology: Algebraic structure
and applications, Phys. Rep., 539, 135-224 (2014);
F. C. Khanna, APCM , J. M. C. Malbouisson and A. E. Santana,
Ann. Phys. (N.Y.) 326, 2364 (2011);
F. C. Khanna, APCM, J. M. C. Malbouisson, A. E. Santana,
Thermal quantum field theory: algebraic aspects and
applications, World Scientific, Singapore (2009)

This allows to treat jointly the effects of temperature and spatial
boundaries. This sets forth grounds for an analysis of finite-size
effects in phase transitions



Effective models

Rigorous QCD calculations, both at zero and finite temperature,
have been worked out, but mainly treating the asymptotically
free domain at high energies or high temperatures, where
perturbation theory is applicable. That is why simplified,
phenomenological models have been implemented along the
years, particularly four-fermion interacting models, considered
as effective theories for QCD. They have proved to be an
enlightening approaches in describing properties of hadronic
matter

Among them, the Gross-Neveu (GN) model provides the
simplest effective theory which may be considered as describing
quark interactions, as a direct four-fermion coupling, where
gluon fields and color degrees of freedom are integrated out,
resembling the Fermi model of the weak interaction. As such,
one needs not to be worried about performing perturbative
summations, nor with renormalizability.



Magnetic effects on the model

We consider a massive version of the GN model in a
D-dimensional Euclidean space, RD, at zero chemical potential,
described by the Hamiltonian

H =

∫
dDx

{
ψ†(x)(iγµDµ −m0)ψ(x) +

λ0

2
[
ψ†(x)ψ(x)

]2}
,

(1)

where m0 and λ0 are respectively the physical mass and
coupling constant at zero temperature and zero chemical
potential in the absence of boundaries and of an applied
magnetic field.

Dµ is the covariant derivative, Dµ = ∂µ−ieAµ, and the gauge
Aµ = (0,0,Bx1, . . . ,0) is used. A constant and uniform magnetic
field B is applied along the x3 -direction.



Magnetic effects on the model

Introduce finite temperature β−1 and chemical potential µ
corrections to the mass, considering one spatial dimension
compactified with a compactification length L (the size of the
system). We define the temperature-, chemical-potential-,
magnetic-field-, and size-dependent mass, m(D, β, L, µ, ω), by

m(D, β, L, µ, ω) = m0 + Σ(D, β, L, µ, ω), (2)

where ω = eB, is the so-called cyclotron frequency.

Then we may write down a free-energy density of the
Ginzburg–Landau type,

F = a−m(D, β,L, µ, ω)φ2(x) + λ0 φ
4(x); (3)

where φ(x) =
√
〈ψ†(x)ψ(x)〉, where 〈·〉 means thermal average

in the grand-canonical ensemble



Magnetic effects on the model

Finite-temperature and density (chemical potential) corrections
to the self-energy, Σ(D, β, L, µ, ω), together with the
compactification of one of the spatial dimensions, are taken into
account by using the appropriate generalized Matsubara
formalism, i.e., the Feynman rules are modified accordingly to∫

dp̄0

2π
→ 1

β

+∞∑
n1=−∞

, p̄0 → ωn1 − iµ ;

∫
dp̄3

2π
→ 1

L

+∞∑
n2=−∞

, p̄3 → ωn2 ,

where ωn1 = (2n1 + 1)π/β and ωn2 = (2n2 + 1)π/L are
generalized Matsubara frequencies



Magnetic effects on the model

dimensionless parameters defined by

λ = λ0m2
0, t = T/m0, ξ = L−1/m0, δ = ω/m2

0, γ = µ/m0, (4)

and where

c2
` = c2

` (δ, σ) = [δ(2`+ 1− σ) + 1]/4π2, (5)

a1 = (m0β)−2 = t2, a2 = (m0L)−2 = ξ2,
b1 = iβµ/2π − 1/2 = iγ/2πt − 1/2 and b2 = −1/2.

we get a finite correction to the mass

ΣR(t , ξ, γ, δ) =
λδ

π

∑
σ=±1

∞∑
`=0

Rc`(δ,σ)(1; t , ξ, γ), (6)

where Rc`(δ,σ)(1; t , ξ, γ) is finite;
∑
σ=±1 and

∑∞
`=0: respectively

sums over the spin polarizations and Landau levels.



Magnetic effects on the model

We get the corrected mass,

m(t , ξ, γ, δ)

m0
= 1 +

λδ

π

[
F0(t , ξ, γ, δ) + 2

∞∑
`=1

F`(t , ξ, γ, δ)

]
(7)

F`(t , ξ, γ, δ) =
∞∑

n1=1

(−1)n1 cosh
(n1γ

t

)
K0

(√
2δ`+ 1 n1

t

)

+
∞∑

n2=1

(−1)n2K0

(√
2δ`+ 1 n2

ξ

)

+ 2
∞∑

n1,n2=1

(−1)n1+n2 cosh
(n1γ

t

)
K0

√2δ`+ 1

√
n2

1
t2 +

n2
2
ξ2

 . (8)



Magnetic effects on the model

Criticality is attained when the corrected mass, m(t , ξ, γ, δ),
vanishes. The solutions of m(t , ξ, γ, δ) = 0 provide the
size-dependent critical temperatures as a function the applied
magnetic field.

An entirely analogous (and simpler) calculation leads to the
critical equation in the absence of an applied field but, in this
case, an integral over two momentum variables (those whose
symmetry over the corresponding coordinates is broken by the
magnetic field) should be evaluated using dimensional
regularization methods; one obtains

m(t , ξ)

m0
= 1 +

2λ
π2 Rc(0; t , ξ, γ), (9)

where c = 1/2π



Magnetic effects on the model

We adopt a heuristic approach; we think of the model as a
simplified description (a “toy model") of a system of
fermion-antifermion pairs of size L at temperature β−1, under the
influence of a magnetic field δ. The transition temperature under
these conditions is interpreted as the temperature at which the
pairs dissociate.



General features
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Figure: . Reduced critical temperature, tc , as a function of the reduced inverse size of the system, ξ, for
vanishing chemical potential, γ = 0.0, fixed λ = 1.0, and some values of the magnetic field: δ = 0.0; 0.2; 2.0; and
7.0, full-, dashed-, dotdashed- and dotted-lines, respectively. We consider the system in the absence of an applied
field. Using the definition of reduced inverse size, we find a minimal size of the system of L0 = 1/m0ξ0. In this
case, we get from the figure that at zero temperature and with γ = 0 and λ = 1, the reduced inverse size is roughly
ξ0 ≈ 2.60. Taking for m0 the effective quark mass of a light meson [arXiv:hep-ph/0611084] of ∼ 70 MeV, we
obtain, using the conversion MeV−1 ≈ 196.9 fm, L0 ≈ 1.08 fm; this is of the order of magnitude of the estimated
size of a meson. On the other hand, we see from the full line in the figure, that for reduced inverse sizes such that
ξ . 1.5, the reduced temperature is almost constant and has a value of t ≈ 2.60. This gives a transition
temperature of Tc ≈ 182 MeV for all sizes L & 1.89 fm, much larger that the zero-temperature minimal size, which
we think as being the size of a fermion-antifermion bound state. The transition temperature that we have is very
close to the estimated deconfining temperature for hadrons in the absence of an applied field.
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Figure: . Phase diagram (ξ × tc ) for fixed values of the magnetic field, δ = 8.0, and the coupling constant,
λ = 2.0, and three values of the chemical potential: γ = 0.0; 0.35; and 0.5, corresponding to the full-, dashed-,
dotdashed-lines respectively. This set of curves give the reduced critical temperature, tc , as a function of the
reduced inverse size of the system ξ, for three values of the reduced chemical potential: γ = 0.0, 0.35, and 0.5,
corresponding to the full-, dashed-, dotdashed-lines respectively; we take a fixed value of the reduced applied field,
δ = 8.0 and the dimensionless coupling constant λ = 2.0. For each value of γ the broken phase is at the interior
of the the corresponding curve. We see that the system presents a minimal size below which there is no transition.
This minimal size is independent of the chemical potential
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Figure: . Reduced transition temperature as a function of the reduced inverse size, for fixed γ = 0.3 and
δ = 5.0, and distinct values of the quartic self-coupling: λ = 0.5; 1.0; and 2.0, full-, dashed- and dotdashed-lines,
respectively. Also, dissociation of the system is favored for higher values of the coupling constant; as already
mentioned above, larger values of the quartic coupling constant leads to larger values of the minimal allowed size L0
and lower values of the critical temperature.
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Figure: . Reduced critical temperature, tc , as a function of the reduced inverse size of the system, ξ, for
vanishing chemical potential, γ = 0.0, fixed λ = 1.0, and some values of the magnetic field: δ = 0.0; 0.2; 2.0; and
7.0, full-, dashed-, dotdashed- and dotted-lines, respectively. When an applied field is present, for instance, δ = 2.0,
we find from the figure, ξ0(δ = 2.0) ≈ 1.5, corresponding to a minimal size of L0(δ = 2.0) ≈ 1.9 fm. Comparing
with the value L0(δ = 0.0) ≈ 1.1 fm, we see that, even at zero temperature, the action of the magnetic field tends
to dissociate the system. This effect is more important for stronger magnetic fields and higher temperatures.



Finite size and magnetic effects on phase transitions
"Though this be madness, yet there is method in ’t. Will you
walk out of the air, my lord?"
(Hamlet, Act 1. Scene V)


